Cargando…
An interpretable stacking ensemble learning framework based on multi-dimensional data for real-time prediction of drug concentration: The example of olanzapine
Background and Aim: Therapeutic drug monitoring (TDM) has evolved over the years as an important tool for personalized medicine. Nevertheless, some limitations are associated with traditional TDM. Emerging data-driven model forecasting [e.g., through machine learning (ML)-based approaches] has been...
Autores principales: | Zhu, Xiuqing, Hu, Jinqing, Xiao, Tao, Huang, Shanqing, Wen, Yuguan, Shang, Dewei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9552071/ https://www.ncbi.nlm.nih.gov/pubmed/36238557 http://dx.doi.org/10.3389/fphar.2022.975855 |
Ejemplares similares
-
Integrating machine learning with electronic health record data to facilitate detection of prolactin level and pharmacovigilance signals in olanzapine-treated patients
por: Zhu, Xiuqing, et al.
Publicado: (2022) -
Machine learning advances the integration of covariates in population pharmacokinetic models: Valproic acid as an example
por: Zhu, Xiuqing, et al.
Publicado: (2022) -
What to Do About Missed Doses? A Retrospective Study of Olanzapine in the Elderly
por: Xiao, Tao, et al.
Publicado: (2021) -
Case Report: Predicting the Range of Lamotrigine Concentration Using Pharmacokinetic Models Based on Monte Carlo Simulation: A Case Study of Antiepileptic Drug-Related Leukopenia
por: Zhu, Xiuqing, et al.
Publicado: (2021) -
Comprehensive Bibliometric Analysis of the Kynurenine Pathway in Mood Disorders: Focus on Gut Microbiota Research
por: Zhu, Xiuqing, et al.
Publicado: (2021)