Cargando…
Synthesis of Optically Active syn- and anti-Chlorohydrins through a Bienzymatic Reductive Cascade
[Image: see text] A bienzymatic cascade has been designed and optimized to obtain enantiopure chlorohydrins starting from the corresponding 1-aryl-2-chlorobut-2-en-1-ones. For the synthesis of these α-chloroenones, a two-step sequence was developed consisting of the allylation of the corresponding a...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9552227/ https://www.ncbi.nlm.nih.gov/pubmed/36154101 http://dx.doi.org/10.1021/acs.orglett.2c02592 |
Sumario: | [Image: see text] A bienzymatic cascade has been designed and optimized to obtain enantiopure chlorohydrins starting from the corresponding 1-aryl-2-chlorobut-2-en-1-ones. For the synthesis of these α-chloroenones, a two-step sequence was developed consisting of the allylation of the corresponding aldehyde with 3-dichloroprop-1-ene, followed by oxidation and further isomerization. The selective cooperative catalytic system involving ene-reductases (EREDs) and alcohol dehydrogenases (ADHs) afforded the desired optically active chlorohydrins under mild reaction conditions in excellent conversions (up to >99%) and selectivities (up to >99:1 diastereomeric ratio (dr), >99% enantiomeric excess (ee)). |
---|