Cargando…

AI protein structure prediction-based modeling and mutagenesis of a protostome receptor and peptide ligands reveal key residues for their interaction

The protostome leucokinin (LK) signaling system, including LK peptides and their G protein-coupled receptors, has been characterized in several species. Despite the progress, molecular mechanisms governing LK peptide–receptor interactions remain to be elucidated. Previously, we identified a precurso...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Shi-Qi, Li, Ya-Dong, Chen, Ping, Zhang, Guo, Wang, Hui-Ying, Jiang, Hui-Min, Liu, Wei-Jia, Xu, Ju-Ping, Ding, Xue-Ying, Fu, Ping, Yu, Ke, Zhou, Hai-Bo, Checco, James W., Jing, Jian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Biochemistry and Molecular Biology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9562341/
https://www.ncbi.nlm.nih.gov/pubmed/36049520
http://dx.doi.org/10.1016/j.jbc.2022.102440
Descripción
Sumario:The protostome leucokinin (LK) signaling system, including LK peptides and their G protein-coupled receptors, has been characterized in several species. Despite the progress, molecular mechanisms governing LK peptide–receptor interactions remain to be elucidated. Previously, we identified a precursor protein for Aplysia leucokinin-like peptides (ALKs) that contains the greatest number of amidated peptides among LK precursors in all species identified so far. Here, we identified the first ALK receptor from Aplysia, ALKR. We used cell-based IP1 activation assays to demonstrate that two ALK peptides with the most copies, ALK1 and ALK2, activated ALKR with high potencies. Other endogenous ALK-derived peptides bearing the FXXWX-amide motif also activated ALKR to various degrees. Our examination of cross-species activity of ALKs with the Anopheles LK receptor was consistent with a critical role for the FXXWX-amide motif in receptor activity. Furthermore, we showed, through alanine substitution of ALK1, the highly conserved phenylalanine (F), tryptophan (W), and C-terminal amidation were each essential for receptor activation. Finally, we used an artificial intelligence–based protein structure prediction server (Robetta) and Autodock Vina to predict the ligand-bound conformation of ALKR. Our model predicted several interactions (i.e., hydrophobic interactions, hydrogen bonds, and amide-pi stacking) between ALK peptides and ALKR, and several of our substitution and mutagenesis experiments were consistent with the predicted model. In conclusion, our results provide important information defining possible interactions between ALK peptides and their receptors. The workflow utilized here may be useful for studying other ligand–receptor interactions for a neuropeptide signaling system, particularly in protostomes.