Cargando…
Impact of Electric Arcs and Pulsed Electric Fields on the Functional Properties of Beta-Lactoglobulin
Beta-lactoglobulin (β-lg) is a major whey protein with various techno-functional properties that can be improved by several treatments. Therefore, the objective of this study was to explore the impact of green high-voltage electrical treatments (HVETs)—namely, pulsed electric fields and electric arc...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9562651/ https://www.ncbi.nlm.nih.gov/pubmed/36230068 http://dx.doi.org/10.3390/foods11192992 |
Sumario: | Beta-lactoglobulin (β-lg) is a major whey protein with various techno-functional properties that can be improved by several treatments. Therefore, the objective of this study was to explore the impact of green high-voltage electrical treatments (HVETs)—namely, pulsed electric fields and electric arcs—on the functional properties of β-lg. Both emulsifying and foaming stability and capacity, as well as the hygroscopicity of non-treated and pretreated β-lg, were explored. The results demonstrated that the emulsifying capacity and stability of pretreated samples increased by 43% and 22% when compared to native β-lg, respectively. Likewise, the pretreated β-lg displayed better foaming stability compared to native β-lg. In addition, the HVETs significantly decreased the hygroscopicity of β-lg (by 48% on average), making it a good ingredient with reduced hygroscopicity for the food industry. |
---|