Cargando…

Classification of Beef longissimus thoracis Muscle Tenderness Using Hyperspectral Imaging and Chemometrics

Nowadays, the meat industry requires non-destructive, sustainable, and rapid methods that can provide objective and accurate quality assessment with little human intervention. Therefore, the present research aimed to create a model that can classify beef samples from longissimus thoracis muscle acco...

Descripción completa

Detalles Bibliográficos
Autores principales: León-Ecay, Sara, López-Maestresalas, Ainara, Murillo-Arbizu, María Teresa, Beriain, María José, Mendizabal, José Antonio, Arazuri, Silvia, Jarén, Carmen, Bass, Phillip D., Colle, Michael J., García, David, Romano-Moreno, Miguel, Insausti, Kizkitza
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9562682/
https://www.ncbi.nlm.nih.gov/pubmed/36230181
http://dx.doi.org/10.3390/foods11193105
_version_ 1784808229610455040
author León-Ecay, Sara
López-Maestresalas, Ainara
Murillo-Arbizu, María Teresa
Beriain, María José
Mendizabal, José Antonio
Arazuri, Silvia
Jarén, Carmen
Bass, Phillip D.
Colle, Michael J.
García, David
Romano-Moreno, Miguel
Insausti, Kizkitza
author_facet León-Ecay, Sara
López-Maestresalas, Ainara
Murillo-Arbizu, María Teresa
Beriain, María José
Mendizabal, José Antonio
Arazuri, Silvia
Jarén, Carmen
Bass, Phillip D.
Colle, Michael J.
García, David
Romano-Moreno, Miguel
Insausti, Kizkitza
author_sort León-Ecay, Sara
collection PubMed
description Nowadays, the meat industry requires non-destructive, sustainable, and rapid methods that can provide objective and accurate quality assessment with little human intervention. Therefore, the present research aimed to create a model that can classify beef samples from longissimus thoracis muscle according to their tenderness degree based on hyperspectral imaging (HSI). In order to obtain different textures, two main strategies were used: (a) aging type (wet and dry aging with or without starters) and (b) aging times (0, 7, 13, 21, and 27 days). Categorization into two groups was carried out for further chemometric analysis, encompassing group 1 (n(group1) = 30) with samples with WBSF ˂ 53 N whereas group 2 (n(group2) = 28) comprised samples with WBSF values ≥ 53 N. Then, classification models were created by applying the partial least squares discriminant analysis (PLS-DA) method. The best results were achieved by combining the following pre-processing algorithms: 1st derivative + mean center, reaching 70.83% of correctly classified (CC) samples and 67.14% for cross validation (CV) and prediction, respectively. In general, it can be concluded that HSI technology combined with chemometrics has the potential to differentiate and classify meat samples according to their textural characteristics.
format Online
Article
Text
id pubmed-9562682
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-95626822022-10-15 Classification of Beef longissimus thoracis Muscle Tenderness Using Hyperspectral Imaging and Chemometrics León-Ecay, Sara López-Maestresalas, Ainara Murillo-Arbizu, María Teresa Beriain, María José Mendizabal, José Antonio Arazuri, Silvia Jarén, Carmen Bass, Phillip D. Colle, Michael J. García, David Romano-Moreno, Miguel Insausti, Kizkitza Foods Article Nowadays, the meat industry requires non-destructive, sustainable, and rapid methods that can provide objective and accurate quality assessment with little human intervention. Therefore, the present research aimed to create a model that can classify beef samples from longissimus thoracis muscle according to their tenderness degree based on hyperspectral imaging (HSI). In order to obtain different textures, two main strategies were used: (a) aging type (wet and dry aging with or without starters) and (b) aging times (0, 7, 13, 21, and 27 days). Categorization into two groups was carried out for further chemometric analysis, encompassing group 1 (n(group1) = 30) with samples with WBSF ˂ 53 N whereas group 2 (n(group2) = 28) comprised samples with WBSF values ≥ 53 N. Then, classification models were created by applying the partial least squares discriminant analysis (PLS-DA) method. The best results were achieved by combining the following pre-processing algorithms: 1st derivative + mean center, reaching 70.83% of correctly classified (CC) samples and 67.14% for cross validation (CV) and prediction, respectively. In general, it can be concluded that HSI technology combined with chemometrics has the potential to differentiate and classify meat samples according to their textural characteristics. MDPI 2022-10-06 /pmc/articles/PMC9562682/ /pubmed/36230181 http://dx.doi.org/10.3390/foods11193105 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
León-Ecay, Sara
López-Maestresalas, Ainara
Murillo-Arbizu, María Teresa
Beriain, María José
Mendizabal, José Antonio
Arazuri, Silvia
Jarén, Carmen
Bass, Phillip D.
Colle, Michael J.
García, David
Romano-Moreno, Miguel
Insausti, Kizkitza
Classification of Beef longissimus thoracis Muscle Tenderness Using Hyperspectral Imaging and Chemometrics
title Classification of Beef longissimus thoracis Muscle Tenderness Using Hyperspectral Imaging and Chemometrics
title_full Classification of Beef longissimus thoracis Muscle Tenderness Using Hyperspectral Imaging and Chemometrics
title_fullStr Classification of Beef longissimus thoracis Muscle Tenderness Using Hyperspectral Imaging and Chemometrics
title_full_unstemmed Classification of Beef longissimus thoracis Muscle Tenderness Using Hyperspectral Imaging and Chemometrics
title_short Classification of Beef longissimus thoracis Muscle Tenderness Using Hyperspectral Imaging and Chemometrics
title_sort classification of beef longissimus thoracis muscle tenderness using hyperspectral imaging and chemometrics
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9562682/
https://www.ncbi.nlm.nih.gov/pubmed/36230181
http://dx.doi.org/10.3390/foods11193105
work_keys_str_mv AT leonecaysara classificationofbeeflongissimusthoracismuscletendernessusinghyperspectralimagingandchemometrics
AT lopezmaestresalasainara classificationofbeeflongissimusthoracismuscletendernessusinghyperspectralimagingandchemometrics
AT murilloarbizumariateresa classificationofbeeflongissimusthoracismuscletendernessusinghyperspectralimagingandchemometrics
AT beriainmariajose classificationofbeeflongissimusthoracismuscletendernessusinghyperspectralimagingandchemometrics
AT mendizabaljoseantonio classificationofbeeflongissimusthoracismuscletendernessusinghyperspectralimagingandchemometrics
AT arazurisilvia classificationofbeeflongissimusthoracismuscletendernessusinghyperspectralimagingandchemometrics
AT jarencarmen classificationofbeeflongissimusthoracismuscletendernessusinghyperspectralimagingandchemometrics
AT bassphillipd classificationofbeeflongissimusthoracismuscletendernessusinghyperspectralimagingandchemometrics
AT collemichaelj classificationofbeeflongissimusthoracismuscletendernessusinghyperspectralimagingandchemometrics
AT garciadavid classificationofbeeflongissimusthoracismuscletendernessusinghyperspectralimagingandchemometrics
AT romanomorenomiguel classificationofbeeflongissimusthoracismuscletendernessusinghyperspectralimagingandchemometrics
AT insaustikizkitza classificationofbeeflongissimusthoracismuscletendernessusinghyperspectralimagingandchemometrics