Cargando…

Screening for α-Glucosidase-Inhibiting Saponins from Pressurized Hot Water Extracts of Quinoa Husks

The present study extracted total saponins from quinoa husks with pressurized hot water extraction and optimized the extraction conditions. The response surface methodology (RSM) with a Box–Behnken design (BBD) was employed to investigate the effects of extraction flow rate, extraction temperature a...

Descripción completa

Detalles Bibliográficos
Autores principales: Su, Rong, Li, Jing, Hu, Na, Wang, Honglun, Cao, Jingya, Chi, Xiaofeng, Dong, Qi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9563573/
https://www.ncbi.nlm.nih.gov/pubmed/36230101
http://dx.doi.org/10.3390/foods11193026
Descripción
Sumario:The present study extracted total saponins from quinoa husks with pressurized hot water extraction and optimized the extraction conditions. The response surface methodology (RSM) with a Box–Behnken design (BBD) was employed to investigate the effects of extraction flow rate, extraction temperature and extraction time on the extraction yield of total saponins. A maximal yield of 23.06 mg/g was obtained at conditions of 2 mL/min, 210 °C and 50 min. The constituents of the extracts were analyzed by liquid chromatography–mass spectrometry (LC-MS). A total of twenty-three compounds were identified, including five flavonoids, seventeen triterpenoid saponins and a phenolic acid. Moreover, we performed an in vitro assay for the α-glucosidase activity and found a stronger inhibitory effect of the quinoa husk extracts than acarbose, suggesting its potential to be developed into functional products with hypoglycemic effect. Finally, our molecular docking analyses indicated triterpenoid saponins as the main bioactive components.