Cargando…
NIR Spectrometric Approach for Geographical Origin Identification and Taste Related Compounds Content Prediction of Lushan Yunwu Tea
Lushan Yunwu Tea is one of a unique Chinese tea series, and total polyphenols (TP), free amino acids (FAA), and polyphenols-to-amino acids ratio models (TP/FAA) represent its most important taste-related indicators. In this work, a feasibility study was proposed to simultaneously predict the authent...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9563823/ https://www.ncbi.nlm.nih.gov/pubmed/36230052 http://dx.doi.org/10.3390/foods11192976 |
Sumario: | Lushan Yunwu Tea is one of a unique Chinese tea series, and total polyphenols (TP), free amino acids (FAA), and polyphenols-to-amino acids ratio models (TP/FAA) represent its most important taste-related indicators. In this work, a feasibility study was proposed to simultaneously predict the authenticity identification and taste-related indicators of Lushan Yunwu tea, using near-infrared spectroscopy combined with multivariate analysis. Different waveband selections and spectral pre-processing methods were compared during the discriminant analysis (DA) and partial least squares (PLS) model-building process. The DA model achieved optimal performance in distinguishing Lushan Yunwu tea from other non-Lushan Yunwu teas, with a correct classification rate of up to 100%. The synergy interval partial least squares (siPLS) and backward interval partial least squares (biPLS) algorithms showed considerable advantages in improving the prediction performance of TP, FAA, and TP/FAA. The siPLS algorithms achieved the best prediction results for TP (R(P) = 0.9407, RPD = 3.00), FAA (R(P) = 0.9110, RPD = 2.21) and TP/FAA (R(P) = 0.9377, RPD = 2.90). These results indicated that NIR spectroscopy was a useful and low-cost tool by which to offer definitive quantitative and qualitative analysis for Lushan Yunwu tea. |
---|