Cargando…

Enhancement Methods of Antioxidant Capacity in Rice Bran: A Review

Rice (Oryza sativa L.) is a primary food that is widely consumed throughout the world, especially in Asian countries. The two main subspecies of rice are japonica and indica which are different in physical characteristics. In general, both indica and japonica rice consist of three types of grain col...

Descripción completa

Detalles Bibliográficos
Autores principales: Andriani, Riza, Subroto, Toto, Ishmayana, Safri, Kurnia, Dikdik
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9564381/
https://www.ncbi.nlm.nih.gov/pubmed/36230070
http://dx.doi.org/10.3390/foods11192994
Descripción
Sumario:Rice (Oryza sativa L.) is a primary food that is widely consumed throughout the world, especially in Asian countries. The two main subspecies of rice are japonica and indica which are different in physical characteristics. In general, both indica and japonica rice consist of three types of grain colors, namely white, red, and black. Furthermore, rice and rice by-products contain secondary metabolites such as phenolic compounds, flavonoids, and tocopherols that have bioactivities such as antioxidants, antimicrobial, cancer chemopreventive, antidiabetic, and hypolipidemic agents. The existence of health benefits in rice bran, especially as antioxidants, gives rice bran the opportunity to be used as a functional food. Most of the bioactive compounds in plants are found in bound form with cell wall components such as cellulose and lignin. The process of releasing bonds between bioactive components and cell wall components in rice bran can increase the antioxidant capacity. Fermentation and treatment with enzymes were able to increase the total phenolic content, total flavonoids, tocotrienols, tocopherols, and γ-oryzanol in rice bran.