Cargando…
Interpretable Machine Learning Models for Molecular Design of Tyrosine Kinase Inhibitors Using Variational Autoencoders and Perturbation-Based Approach of Chemical Space Exploration
In the current study, we introduce an integrative machine learning strategy for the autonomous molecular design of protein kinase inhibitors using variational autoencoders and a novel cluster-based perturbation approach for exploration of the chemical latent space. The proposed strategy combines aut...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9569663/ https://www.ncbi.nlm.nih.gov/pubmed/36232566 http://dx.doi.org/10.3390/ijms231911262 |