Cargando…
Selective Anti-Leishmanial Strathclyde Minor Groove Binders Using an N-Oxide Tail-Group Modification
The neglected tropical disease leishmaniasis, caused by Leishmania spp., is becoming more problematic due to the emergence of drug-resistant strains. Therefore, new drugs to treat leishmaniasis, with novel mechanisms of action, are urgently required. Strathclyde minor groove binders (S-MGBs) are an...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9569768/ https://www.ncbi.nlm.nih.gov/pubmed/36233213 http://dx.doi.org/10.3390/ijms231911912 |
Sumario: | The neglected tropical disease leishmaniasis, caused by Leishmania spp., is becoming more problematic due to the emergence of drug-resistant strains. Therefore, new drugs to treat leishmaniasis, with novel mechanisms of action, are urgently required. Strathclyde minor groove binders (S-MGBs) are an emerging class of anti-infective agent that have been shown to have potent activity against various bacteria, viruses, fungi and parasites. Herein, it is shown that S-MGBs have potent activity against L. donovani, and that an N-oxide derivation of the tertiary amine tail of typical S-MGBs leads to selective anti-leishmanial activity. Additionally, using S-MGB-219, the N-oxide derivation is shown to retain strong binding to DNA as a 2:1 dimer. These findings support the further study of anti-leishmanial S-MGBs as novel therapeutics. |
---|