Cargando…
A Review on Visual-SLAM: Advancements from Geometric Modelling to Learning-Based Semantic Scene Understanding Using Multi-Modal Sensor Fusion
Simultaneous Localisation and Mapping (SLAM) is one of the fundamental problems in autonomous mobile robots where a robot needs to reconstruct a previously unseen environment while simultaneously localising itself with respect to the map. In particular, Visual-SLAM uses various sensors from the mobi...
Autor principal: | Lai, Tin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9571301/ https://www.ncbi.nlm.nih.gov/pubmed/36236364 http://dx.doi.org/10.3390/s22197265 |
Ejemplares similares
-
SOLO-SLAM: A Parallel Semantic SLAM Algorithm for Dynamic Scenes
por: Sun, Liuxin, et al.
Publicado: (2022) -
Semantic visual simultaneous localization and mapping (SLAM) using deep learning for dynamic scenes
por: Zhang, Xiao Ya, et al.
Publicado: (2023) -
DMS-SLAM: A General Visual SLAM System for Dynamic Scenes with Multiple Sensors
por: Liu, Guihua, et al.
Publicado: (2019) -
A Multi-Feature Fusion Slam System Attaching Semantic Invariant to Points and Lines
por: Li, Gang, et al.
Publicado: (2021) -
A Monocular-Visual SLAM System with Semantic and Optical-Flow Fusion for Indoor Dynamic Environments
por: Chen, Weifeng, et al.
Publicado: (2022)