Cargando…

Model-Free Adaptive Iterative Learning Bipartite Containment Control for Multi-Agent Systems

This paper studies the bipartite containment tracking problem for a class of nonlinear multi-agent systems (MASs), where the interactions among agents can be both cooperative or antagonistic. Firstly, by the dynamic linearization method, we propose a novel model-free adaptive iterative learning cont...

Descripción completa

Detalles Bibliográficos
Autores principales: Sang, Shangyu, Zhang, Ruikun, Lin, Xue
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9572864/
https://www.ncbi.nlm.nih.gov/pubmed/36236210
http://dx.doi.org/10.3390/s22197115
Descripción
Sumario:This paper studies the bipartite containment tracking problem for a class of nonlinear multi-agent systems (MASs), where the interactions among agents can be both cooperative or antagonistic. Firstly, by the dynamic linearization method, we propose a novel model-free adaptive iterative learning control (MFAILC) to solve the bipartite containment problem of MASs. The designed controller only relies on the input and output data of the agent without requiring the model information of MASs. Secondly, we give the convergence condition that the containment error asymptotically converges to zero. The result shows that the output states of all followers will converge to the convex hull formed by the output states of leaders and the symmetric output states of leaders. Finally, the simulation verifies the effectiveness of the proposed method.