Cargando…
MEPP: more transparent motif enrichment by profiling positional correlations
Score-based motif enrichment analysis (MEA) is typically applied to regulatory DNA to infer transcription factors (TFs) that may modulate transcription and chromatin state in different conditions. Most MEA methods determine motif enrichment independent of motif position within a sequence, even when...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9575187/ https://www.ncbi.nlm.nih.gov/pubmed/36267125 http://dx.doi.org/10.1093/nargab/lqac075 |
Sumario: | Score-based motif enrichment analysis (MEA) is typically applied to regulatory DNA to infer transcription factors (TFs) that may modulate transcription and chromatin state in different conditions. Most MEA methods determine motif enrichment independent of motif position within a sequence, even when those sequences harbor anchor points that motifs and their bound TFs may functionally interact with in a distance-dependent fashion, such as other TF binding motifs, transcription start sites (TSS), sequencing assay cleavage sites, or other biologically meaningful features. We developed motif enrichment positional profiling (MEPP), a novel MEA method that outputs a positional enrichment profile of a given TF’s binding motif relative to key anchor points (e.g. transcription start sites, or other motifs) within the analyzed sequences while accounting for lower-order nucleotide bias. Using transcription initiation and TF binding as test cases, we demonstrate MEPP’s utility in determining the sequence positions where motif presence correlates with measures of biological activity, inferring positional dependencies of binding site function. We demonstrate how MEPP can be applied to interpretation and hypothesis generation from experiments that quantify transcription initiation, chromatin structure, or TF binding measurements. MEPP is available for download from https://github.com/npdeloss/mepp. |
---|