Cargando…
Normalization and de-noising of single-cell Hi-C data with BandNorm and scVI-3D
Single-cell high-throughput chromatin conformation capture methodologies (scHi-C) enable profiling of long-range genomic interactions. However, data from these technologies are prone to technical noise and biases that hinder downstream analysis. We develop a normalization approach, BandNorm, and a d...
Autores principales: | Zheng, Ye, Shen, Siqi, Keleş, Sündüz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9575231/ https://www.ncbi.nlm.nih.gov/pubmed/36253828 http://dx.doi.org/10.1186/s13059-022-02774-z |
Ejemplares similares
-
Debiased personalized gene coexpression networks for population-scale scRNA-seq data
por: Lu, Shan, et al.
Publicado: (2023) -
FreeHi-C simulates high fidelity Hi-C data for benchmarking and data augmentation
por: Zheng, Ye, et al.
Publicado: (2019) -
Generative modeling of multi-mapping reads with mHi-C advances analysis of Hi-C studies
por: Zheng, Ye, et al.
Publicado: (2019) -
MLG: multilayer graph clustering for multi-condition scRNA-seq data
por: Lu, Shan, et al.
Publicado: (2021) -
SURF: integrative analysis of a compendium of RNA-seq and CLIP-seq datasets highlights complex governing of alternative transcriptional regulation by RNA-binding proteins
por: Chen, Fan, et al.
Publicado: (2020)