Cargando…

Two-dimensional multiferroic material of metallic p-doped SnSe

Two-dimensional multiferroic materials have garnered broad interests attributed to their magnetoelectric properties and multifunctional applications. Multiferroic heterostructures have been realized, nevertheless, the direct coupling between ferroelectric and ferromagnetic order in a single material...

Descripción completa

Detalles Bibliográficos
Autores principales: Du, Ruofan, Wang, Yuzhu, Cheng, Mo, Wang, Peng, Li, Hui, Feng, Wang, Song, Luying, Shi, Jianping, He, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9576753/
https://www.ncbi.nlm.nih.gov/pubmed/36253483
http://dx.doi.org/10.1038/s41467-022-33917-2
Descripción
Sumario:Two-dimensional multiferroic materials have garnered broad interests attributed to their magnetoelectric properties and multifunctional applications. Multiferroic heterostructures have been realized, nevertheless, the direct coupling between ferroelectric and ferromagnetic order in a single material still remains challenging, especially for two-dimensional materials. Here, we develop a physical vapor deposition approach to synthesize two-dimensional p-doped SnSe. The local phase segregation of SnSe(2) microdomains and accompanying interfacial charge transfer results in the emergence of degenerate semiconductor and metallic feature in SnSe. Intriguingly, the room-temperature ferrimagnetism has been demonstrated in two-dimensional p-doped SnSe with the Curie temperature approaching to ~337 K. Meanwhile, the ferroelectricity is maintained even under the depolarizing field introduced by SnSe(2). The coexistence of ferrimagnetism and ferroelectricity in two-dimensional p-doped SnSe verifies its multiferroic feature. This work presents a significant advance for exploring the magnetoelectric coupling in two-dimensional limit and constructing high-performance logic devices to extend Moore’s law.