Cargando…
Spatial heterogeneity and organization of tumor mutation burden with immune infiltrates within tumors based on whole slide images correlated with patient survival in bladder cancer
BACKGROUND: High tumor mutation burden (TMB-H) could result in an increased number of neoepitopes from somatic mutations expressed by a patient’s own tumor cell which can be recognized and targeted by neighboring tumor-infiltrating lymphocytes (TILs). Deeper understanding of spatial heterogeneity an...
Autores principales: | Xu, Hongming, Clemenceau, Jean René, Park, Sunho, Choi, Jinhwan, Lee, Sung Hak, Hwang, Tae Hyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9577053/ https://www.ncbi.nlm.nih.gov/pubmed/36268064 http://dx.doi.org/10.1016/j.jpi.2022.100105 |
Ejemplares similares
-
Spatial analysis of tumor‐infiltrating lymphocytes in histological sections using deep learning techniques predicts survival in colorectal carcinoma
por: Xu, Hongming, et al.
Publicado: (2022) -
Spatial transcriptomics inferred from pathology whole-slide images links tumor heterogeneity to survival in breast and lung cancer
por: Levy-Jurgenson, Alona, et al.
Publicado: (2020) -
Inferring spatial transcriptomics markers from whole slide images to characterize metastasis-related spatial heterogeneity of colorectal tumors: A pilot study
por: Fatemi, Michael, et al.
Publicado: (2023) -
A Pragmatic Machine Learning Approach to Quantify Tumor-Infiltrating Lymphocytes in Whole Slide Images
por: Shvetsov, Nikita, et al.
Publicado: (2022) -
Deep Learning-Based Mapping of Tumor Infiltrating Lymphocytes in Whole Slide Images of 23 Types of Cancer
por: Abousamra, Shahira, et al.
Publicado: (2022)