Cargando…
SETH predicts nuances of residue disorder from protein embeddings
Predictions for millions of protein three-dimensional structures are only a few clicks away since the release of AlphaFold2 results for UniProt. However, many proteins have so-called intrinsically disordered regions (IDRs) that do not adopt unique structures in isolation. These IDRs are associated w...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9580958/ https://www.ncbi.nlm.nih.gov/pubmed/36304335 http://dx.doi.org/10.3389/fbinf.2022.1019597 |
_version_ | 1784812509253861376 |
---|---|
author | Ilzhöfer, Dagmar Heinzinger, Michael Rost, Burkhard |
author_facet | Ilzhöfer, Dagmar Heinzinger, Michael Rost, Burkhard |
author_sort | Ilzhöfer, Dagmar |
collection | PubMed |
description | Predictions for millions of protein three-dimensional structures are only a few clicks away since the release of AlphaFold2 results for UniProt. However, many proteins have so-called intrinsically disordered regions (IDRs) that do not adopt unique structures in isolation. These IDRs are associated with several diseases, including Alzheimer’s Disease. We showed that three recent disorder measures of AlphaFold2 predictions (pLDDT, “experimentally resolved” prediction and “relative solvent accessibility”) correlated to some extent with IDRs. However, expert methods predict IDRs more reliably by combining complex machine learning models with expert-crafted input features and evolutionary information from multiple sequence alignments (MSAs). MSAs are not always available, especially for IDRs, and are computationally expensive to generate, limiting the scalability of the associated tools. Here, we present the novel method SETH that predicts residue disorder from embeddings generated by the protein Language Model ProtT5, which explicitly only uses single sequences as input. Thereby, our method, relying on a relatively shallow convolutional neural network, outperformed much more complex solutions while being much faster, allowing to create predictions for the human proteome in about 1 hour on a consumer-grade PC with one NVIDIA GeForce RTX 3060. Trained on a continuous disorder scale (CheZOD scores), our method captured subtle variations in disorder, thereby providing important information beyond the binary classification of most methods. High performance paired with speed revealed that SETH’s nuanced disorder predictions for entire proteomes capture aspects of the evolution of organisms. Additionally, SETH could also be used to filter out regions or proteins with probable low-quality AlphaFold2 3D structures to prioritize running the compute-intensive predictions for large data sets. SETH is freely publicly available at: https://github.com/Rostlab/SETH. |
format | Online Article Text |
id | pubmed-9580958 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-95809582022-10-26 SETH predicts nuances of residue disorder from protein embeddings Ilzhöfer, Dagmar Heinzinger, Michael Rost, Burkhard Front Bioinform Bioinformatics Predictions for millions of protein three-dimensional structures are only a few clicks away since the release of AlphaFold2 results for UniProt. However, many proteins have so-called intrinsically disordered regions (IDRs) that do not adopt unique structures in isolation. These IDRs are associated with several diseases, including Alzheimer’s Disease. We showed that three recent disorder measures of AlphaFold2 predictions (pLDDT, “experimentally resolved” prediction and “relative solvent accessibility”) correlated to some extent with IDRs. However, expert methods predict IDRs more reliably by combining complex machine learning models with expert-crafted input features and evolutionary information from multiple sequence alignments (MSAs). MSAs are not always available, especially for IDRs, and are computationally expensive to generate, limiting the scalability of the associated tools. Here, we present the novel method SETH that predicts residue disorder from embeddings generated by the protein Language Model ProtT5, which explicitly only uses single sequences as input. Thereby, our method, relying on a relatively shallow convolutional neural network, outperformed much more complex solutions while being much faster, allowing to create predictions for the human proteome in about 1 hour on a consumer-grade PC with one NVIDIA GeForce RTX 3060. Trained on a continuous disorder scale (CheZOD scores), our method captured subtle variations in disorder, thereby providing important information beyond the binary classification of most methods. High performance paired with speed revealed that SETH’s nuanced disorder predictions for entire proteomes capture aspects of the evolution of organisms. Additionally, SETH could also be used to filter out regions or proteins with probable low-quality AlphaFold2 3D structures to prioritize running the compute-intensive predictions for large data sets. SETH is freely publicly available at: https://github.com/Rostlab/SETH. Frontiers Media S.A. 2022-10-10 /pmc/articles/PMC9580958/ /pubmed/36304335 http://dx.doi.org/10.3389/fbinf.2022.1019597 Text en Copyright © 2022 Ilzhöfer, Heinzinger and Rost. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Bioinformatics Ilzhöfer, Dagmar Heinzinger, Michael Rost, Burkhard SETH predicts nuances of residue disorder from protein embeddings |
title | SETH predicts nuances of residue disorder from protein embeddings |
title_full | SETH predicts nuances of residue disorder from protein embeddings |
title_fullStr | SETH predicts nuances of residue disorder from protein embeddings |
title_full_unstemmed | SETH predicts nuances of residue disorder from protein embeddings |
title_short | SETH predicts nuances of residue disorder from protein embeddings |
title_sort | seth predicts nuances of residue disorder from protein embeddings |
topic | Bioinformatics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9580958/ https://www.ncbi.nlm.nih.gov/pubmed/36304335 http://dx.doi.org/10.3389/fbinf.2022.1019597 |
work_keys_str_mv | AT ilzhoferdagmar sethpredictsnuancesofresiduedisorderfromproteinembeddings AT heinzingermichael sethpredictsnuancesofresiduedisorderfromproteinembeddings AT rostburkhard sethpredictsnuancesofresiduedisorderfromproteinembeddings |