Cargando…

Docking of Syk to FcεRI is enhanced by Lyn but limited in duration by SHIP1

The high-affinity immunoglobulin E (IgE) receptor, FcεRI, is the primary immune receptor found on mast cells and basophils. Signal initiation is classically attributed to phosphorylation of FcεRI β− and γ-subunits by the Src family kinase (SFK) Lyn, followed by the recruitment and activation of the...

Descripción completa

Detalles Bibliográficos
Autores principales: Kanagy, William K., Cleyrat, Cédric, Fazel, Mohamadreza, Lucero, Shayna R., Bruchez, Marcel P., Lidke, Keith A., Wilson, Bridget S., Lidke, Diane S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The American Society for Cell Biology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9582627/
https://www.ncbi.nlm.nih.gov/pubmed/35793126
http://dx.doi.org/10.1091/mbc.E21-12-0603
Descripción
Sumario:The high-affinity immunoglobulin E (IgE) receptor, FcεRI, is the primary immune receptor found on mast cells and basophils. Signal initiation is classically attributed to phosphorylation of FcεRI β− and γ-subunits by the Src family kinase (SFK) Lyn, followed by the recruitment and activation of the tyrosine kinase Syk. FcεRI signaling is tuned by the balance between Syk-driven positive signaling and the engagement of inhibitory molecules, including SHIP1. Here, we investigate the mechanistic contributions of Lyn, Syk, and SHIP1 to the formation of the FcεRI signalosome. Using Lyn-deficient RBL-2H3 mast cells, we found that another SFK can weakly monophosphorylate the γ-subunit, yet Syk still binds the incompletely phosphorylated immunoreceptor tyrosine-based activation motifs (ITAMs). Once recruited, Syk further enhances γ-phosphorylation to propagate signaling. In contrast, the loss of SHIP1 recruitment indicates that Lyn is required for phosphorylation of the β-subunit. We demonstrate two noncanonical Syk binding modes, trans γ-bridging and direct β-binding, that can support signaling when SHIP1 is absent. Using single particle tracking, we reveal a novel role of SHIP1 in regulating Syk activity, where the presence of SHIP1 in the signaling complex acts to increase the Syk:receptor off-rate. These data suggest that the composition and dynamics of the signalosome modulate immunoreceptor signaling activities.