Cargando…
Multimodal integration of radiology, pathology and genomics for prediction of response to PD-(L)1 blockade in patients with non-small cell lung cancer
Immunotherapy is used to treat almost all patients with advanced non-small cell lung cancer (NSCLC); however, identifying robust predictive biomarkers remains challenging. Here we show the predictive capacity of integrating medical imaging, histopathologic and genomic features to predict immunothera...
Autores principales: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9586871/ https://www.ncbi.nlm.nih.gov/pubmed/36038778 http://dx.doi.org/10.1038/s43018-022-00416-8 |
_version_ | 1784813779260801024 |
---|---|
author | Vanguri, Rami S. Luo, Jia Aukerman, Andrew T. Egger, Jacklynn V. Fong, Christopher J. Horvat, Natally Pagano, Andrew Araujo-Filho, Jose de Arimateia Batista Geneslaw, Luke Rizvi, Hira Sosa, Ramon Boehm, Kevin M. Yang, Soo-Ryum Bodd, Francis M. Ventura, Katia Hollmann, Travis J. Ginsberg, Michelle S. Gao, Jianjiong Hellmann, Matthew D. Sauter, Jennifer L. Shah, Sohrab P. |
author_facet | Vanguri, Rami S. Luo, Jia Aukerman, Andrew T. Egger, Jacklynn V. Fong, Christopher J. Horvat, Natally Pagano, Andrew Araujo-Filho, Jose de Arimateia Batista Geneslaw, Luke Rizvi, Hira Sosa, Ramon Boehm, Kevin M. Yang, Soo-Ryum Bodd, Francis M. Ventura, Katia Hollmann, Travis J. Ginsberg, Michelle S. Gao, Jianjiong Hellmann, Matthew D. Sauter, Jennifer L. Shah, Sohrab P. |
author_sort | Vanguri, Rami S. |
collection | PubMed |
description | Immunotherapy is used to treat almost all patients with advanced non-small cell lung cancer (NSCLC); however, identifying robust predictive biomarkers remains challenging. Here we show the predictive capacity of integrating medical imaging, histopathologic and genomic features to predict immunotherapy response using a cohort of 247 patients with advanced NSCLC with multimodal baseline data obtained during diagnostic clinical workup, including computed tomography scan images, digitized programmed death ligand-1 immunohistochemistry slides and known outcomes to immunotherapy. Using domain expert annotations, we developed a computational workflow to extract patient-level features and used a machine-learning approach to integrate multimodal features into a risk prediction model. Our multimodal model (area under the curve (AUC) = 0.80, 95% confidence interval (CI) 0.74–0.86) outperformed unimodal measures, including tumor mutational burden (AUC = 0.61, 95% CI 0.52–0.70) and programmed death ligand-1 immunohistochemistry score (AUC = 0.73, 95% CI 0.65–0.81). Our study therefore provides a quantitative rationale for using multimodal features to improve prediction of immunotherapy response in patients with NSCLC using expert-guided machine learning. |
format | Online Article Text |
id | pubmed-9586871 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group US |
record_format | MEDLINE/PubMed |
spelling | pubmed-95868712022-10-23 Multimodal integration of radiology, pathology and genomics for prediction of response to PD-(L)1 blockade in patients with non-small cell lung cancer Vanguri, Rami S. Luo, Jia Aukerman, Andrew T. Egger, Jacklynn V. Fong, Christopher J. Horvat, Natally Pagano, Andrew Araujo-Filho, Jose de Arimateia Batista Geneslaw, Luke Rizvi, Hira Sosa, Ramon Boehm, Kevin M. Yang, Soo-Ryum Bodd, Francis M. Ventura, Katia Hollmann, Travis J. Ginsberg, Michelle S. Gao, Jianjiong Hellmann, Matthew D. Sauter, Jennifer L. Shah, Sohrab P. Nat Cancer Article Immunotherapy is used to treat almost all patients with advanced non-small cell lung cancer (NSCLC); however, identifying robust predictive biomarkers remains challenging. Here we show the predictive capacity of integrating medical imaging, histopathologic and genomic features to predict immunotherapy response using a cohort of 247 patients with advanced NSCLC with multimodal baseline data obtained during diagnostic clinical workup, including computed tomography scan images, digitized programmed death ligand-1 immunohistochemistry slides and known outcomes to immunotherapy. Using domain expert annotations, we developed a computational workflow to extract patient-level features and used a machine-learning approach to integrate multimodal features into a risk prediction model. Our multimodal model (area under the curve (AUC) = 0.80, 95% confidence interval (CI) 0.74–0.86) outperformed unimodal measures, including tumor mutational burden (AUC = 0.61, 95% CI 0.52–0.70) and programmed death ligand-1 immunohistochemistry score (AUC = 0.73, 95% CI 0.65–0.81). Our study therefore provides a quantitative rationale for using multimodal features to improve prediction of immunotherapy response in patients with NSCLC using expert-guided machine learning. Nature Publishing Group US 2022-08-29 2022 /pmc/articles/PMC9586871/ /pubmed/36038778 http://dx.doi.org/10.1038/s43018-022-00416-8 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Vanguri, Rami S. Luo, Jia Aukerman, Andrew T. Egger, Jacklynn V. Fong, Christopher J. Horvat, Natally Pagano, Andrew Araujo-Filho, Jose de Arimateia Batista Geneslaw, Luke Rizvi, Hira Sosa, Ramon Boehm, Kevin M. Yang, Soo-Ryum Bodd, Francis M. Ventura, Katia Hollmann, Travis J. Ginsberg, Michelle S. Gao, Jianjiong Hellmann, Matthew D. Sauter, Jennifer L. Shah, Sohrab P. Multimodal integration of radiology, pathology and genomics for prediction of response to PD-(L)1 blockade in patients with non-small cell lung cancer |
title | Multimodal integration of radiology, pathology and genomics for prediction of response to PD-(L)1 blockade in patients with non-small cell lung cancer |
title_full | Multimodal integration of radiology, pathology and genomics for prediction of response to PD-(L)1 blockade in patients with non-small cell lung cancer |
title_fullStr | Multimodal integration of radiology, pathology and genomics for prediction of response to PD-(L)1 blockade in patients with non-small cell lung cancer |
title_full_unstemmed | Multimodal integration of radiology, pathology and genomics for prediction of response to PD-(L)1 blockade in patients with non-small cell lung cancer |
title_short | Multimodal integration of radiology, pathology and genomics for prediction of response to PD-(L)1 blockade in patients with non-small cell lung cancer |
title_sort | multimodal integration of radiology, pathology and genomics for prediction of response to pd-(l)1 blockade in patients with non-small cell lung cancer |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9586871/ https://www.ncbi.nlm.nih.gov/pubmed/36038778 http://dx.doi.org/10.1038/s43018-022-00416-8 |
work_keys_str_mv | AT vanguriramis multimodalintegrationofradiologypathologyandgenomicsforpredictionofresponsetopdl1blockadeinpatientswithnonsmallcelllungcancer AT luojia multimodalintegrationofradiologypathologyandgenomicsforpredictionofresponsetopdl1blockadeinpatientswithnonsmallcelllungcancer AT aukermanandrewt multimodalintegrationofradiologypathologyandgenomicsforpredictionofresponsetopdl1blockadeinpatientswithnonsmallcelllungcancer AT eggerjacklynnv multimodalintegrationofradiologypathologyandgenomicsforpredictionofresponsetopdl1blockadeinpatientswithnonsmallcelllungcancer AT fongchristopherj multimodalintegrationofradiologypathologyandgenomicsforpredictionofresponsetopdl1blockadeinpatientswithnonsmallcelllungcancer AT horvatnatally multimodalintegrationofradiologypathologyandgenomicsforpredictionofresponsetopdl1blockadeinpatientswithnonsmallcelllungcancer AT paganoandrew multimodalintegrationofradiologypathologyandgenomicsforpredictionofresponsetopdl1blockadeinpatientswithnonsmallcelllungcancer AT araujofilhojosedearimateiabatista multimodalintegrationofradiologypathologyandgenomicsforpredictionofresponsetopdl1blockadeinpatientswithnonsmallcelllungcancer AT geneslawluke multimodalintegrationofradiologypathologyandgenomicsforpredictionofresponsetopdl1blockadeinpatientswithnonsmallcelllungcancer AT rizvihira multimodalintegrationofradiologypathologyandgenomicsforpredictionofresponsetopdl1blockadeinpatientswithnonsmallcelllungcancer AT sosaramon multimodalintegrationofradiologypathologyandgenomicsforpredictionofresponsetopdl1blockadeinpatientswithnonsmallcelllungcancer AT boehmkevinm multimodalintegrationofradiologypathologyandgenomicsforpredictionofresponsetopdl1blockadeinpatientswithnonsmallcelllungcancer AT yangsooryum multimodalintegrationofradiologypathologyandgenomicsforpredictionofresponsetopdl1blockadeinpatientswithnonsmallcelllungcancer AT boddfrancism multimodalintegrationofradiologypathologyandgenomicsforpredictionofresponsetopdl1blockadeinpatientswithnonsmallcelllungcancer AT venturakatia multimodalintegrationofradiologypathologyandgenomicsforpredictionofresponsetopdl1blockadeinpatientswithnonsmallcelllungcancer AT hollmanntravisj multimodalintegrationofradiologypathologyandgenomicsforpredictionofresponsetopdl1blockadeinpatientswithnonsmallcelllungcancer AT ginsbergmichelles multimodalintegrationofradiologypathologyandgenomicsforpredictionofresponsetopdl1blockadeinpatientswithnonsmallcelllungcancer AT gaojianjiong multimodalintegrationofradiologypathologyandgenomicsforpredictionofresponsetopdl1blockadeinpatientswithnonsmallcelllungcancer AT multimodalintegrationofradiologypathologyandgenomicsforpredictionofresponsetopdl1blockadeinpatientswithnonsmallcelllungcancer AT hellmannmatthewd multimodalintegrationofradiologypathologyandgenomicsforpredictionofresponsetopdl1blockadeinpatientswithnonsmallcelllungcancer AT sauterjenniferl multimodalintegrationofradiologypathologyandgenomicsforpredictionofresponsetopdl1blockadeinpatientswithnonsmallcelllungcancer AT shahsohrabp multimodalintegrationofradiologypathologyandgenomicsforpredictionofresponsetopdl1blockadeinpatientswithnonsmallcelllungcancer |