Cargando…

Multimodal integration of radiology, pathology and genomics for prediction of response to PD-(L)1 blockade in patients with non-small cell lung cancer

Immunotherapy is used to treat almost all patients with advanced non-small cell lung cancer (NSCLC); however, identifying robust predictive biomarkers remains challenging. Here we show the predictive capacity of integrating medical imaging, histopathologic and genomic features to predict immunothera...

Descripción completa

Detalles Bibliográficos
Autores principales: Vanguri, Rami S., Luo, Jia, Aukerman, Andrew T., Egger, Jacklynn V., Fong, Christopher J., Horvat, Natally, Pagano, Andrew, Araujo-Filho, Jose de Arimateia Batista, Geneslaw, Luke, Rizvi, Hira, Sosa, Ramon, Boehm, Kevin M., Yang, Soo-Ryum, Bodd, Francis M., Ventura, Katia, Hollmann, Travis J., Ginsberg, Michelle S., Gao, Jianjiong, Hellmann, Matthew D., Sauter, Jennifer L., Shah, Sohrab P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group US 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9586871/
https://www.ncbi.nlm.nih.gov/pubmed/36038778
http://dx.doi.org/10.1038/s43018-022-00416-8
_version_ 1784813779260801024
author Vanguri, Rami S.
Luo, Jia
Aukerman, Andrew T.
Egger, Jacklynn V.
Fong, Christopher J.
Horvat, Natally
Pagano, Andrew
Araujo-Filho, Jose de Arimateia Batista
Geneslaw, Luke
Rizvi, Hira
Sosa, Ramon
Boehm, Kevin M.
Yang, Soo-Ryum
Bodd, Francis M.
Ventura, Katia
Hollmann, Travis J.
Ginsberg, Michelle S.
Gao, Jianjiong
Hellmann, Matthew D.
Sauter, Jennifer L.
Shah, Sohrab P.
author_facet Vanguri, Rami S.
Luo, Jia
Aukerman, Andrew T.
Egger, Jacklynn V.
Fong, Christopher J.
Horvat, Natally
Pagano, Andrew
Araujo-Filho, Jose de Arimateia Batista
Geneslaw, Luke
Rizvi, Hira
Sosa, Ramon
Boehm, Kevin M.
Yang, Soo-Ryum
Bodd, Francis M.
Ventura, Katia
Hollmann, Travis J.
Ginsberg, Michelle S.
Gao, Jianjiong
Hellmann, Matthew D.
Sauter, Jennifer L.
Shah, Sohrab P.
author_sort Vanguri, Rami S.
collection PubMed
description Immunotherapy is used to treat almost all patients with advanced non-small cell lung cancer (NSCLC); however, identifying robust predictive biomarkers remains challenging. Here we show the predictive capacity of integrating medical imaging, histopathologic and genomic features to predict immunotherapy response using a cohort of 247 patients with advanced NSCLC with multimodal baseline data obtained during diagnostic clinical workup, including computed tomography scan images, digitized programmed death ligand-1 immunohistochemistry slides and known outcomes to immunotherapy. Using domain expert annotations, we developed a computational workflow to extract patient-level features and used a machine-learning approach to integrate multimodal features into a risk prediction model. Our multimodal model (area under the curve (AUC) = 0.80, 95% confidence interval (CI) 0.74–0.86) outperformed unimodal measures, including tumor mutational burden (AUC = 0.61, 95% CI 0.52–0.70) and programmed death ligand-1 immunohistochemistry score (AUC = 0.73, 95% CI 0.65–0.81). Our study therefore provides a quantitative rationale for using multimodal features to improve prediction of immunotherapy response in patients with NSCLC using expert-guided machine learning.
format Online
Article
Text
id pubmed-9586871
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group US
record_format MEDLINE/PubMed
spelling pubmed-95868712022-10-23 Multimodal integration of radiology, pathology and genomics for prediction of response to PD-(L)1 blockade in patients with non-small cell lung cancer Vanguri, Rami S. Luo, Jia Aukerman, Andrew T. Egger, Jacklynn V. Fong, Christopher J. Horvat, Natally Pagano, Andrew Araujo-Filho, Jose de Arimateia Batista Geneslaw, Luke Rizvi, Hira Sosa, Ramon Boehm, Kevin M. Yang, Soo-Ryum Bodd, Francis M. Ventura, Katia Hollmann, Travis J. Ginsberg, Michelle S. Gao, Jianjiong Hellmann, Matthew D. Sauter, Jennifer L. Shah, Sohrab P. Nat Cancer Article Immunotherapy is used to treat almost all patients with advanced non-small cell lung cancer (NSCLC); however, identifying robust predictive biomarkers remains challenging. Here we show the predictive capacity of integrating medical imaging, histopathologic and genomic features to predict immunotherapy response using a cohort of 247 patients with advanced NSCLC with multimodal baseline data obtained during diagnostic clinical workup, including computed tomography scan images, digitized programmed death ligand-1 immunohistochemistry slides and known outcomes to immunotherapy. Using domain expert annotations, we developed a computational workflow to extract patient-level features and used a machine-learning approach to integrate multimodal features into a risk prediction model. Our multimodal model (area under the curve (AUC) = 0.80, 95% confidence interval (CI) 0.74–0.86) outperformed unimodal measures, including tumor mutational burden (AUC = 0.61, 95% CI 0.52–0.70) and programmed death ligand-1 immunohistochemistry score (AUC = 0.73, 95% CI 0.65–0.81). Our study therefore provides a quantitative rationale for using multimodal features to improve prediction of immunotherapy response in patients with NSCLC using expert-guided machine learning. Nature Publishing Group US 2022-08-29 2022 /pmc/articles/PMC9586871/ /pubmed/36038778 http://dx.doi.org/10.1038/s43018-022-00416-8 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Vanguri, Rami S.
Luo, Jia
Aukerman, Andrew T.
Egger, Jacklynn V.
Fong, Christopher J.
Horvat, Natally
Pagano, Andrew
Araujo-Filho, Jose de Arimateia Batista
Geneslaw, Luke
Rizvi, Hira
Sosa, Ramon
Boehm, Kevin M.
Yang, Soo-Ryum
Bodd, Francis M.
Ventura, Katia
Hollmann, Travis J.
Ginsberg, Michelle S.
Gao, Jianjiong
Hellmann, Matthew D.
Sauter, Jennifer L.
Shah, Sohrab P.
Multimodal integration of radiology, pathology and genomics for prediction of response to PD-(L)1 blockade in patients with non-small cell lung cancer
title Multimodal integration of radiology, pathology and genomics for prediction of response to PD-(L)1 blockade in patients with non-small cell lung cancer
title_full Multimodal integration of radiology, pathology and genomics for prediction of response to PD-(L)1 blockade in patients with non-small cell lung cancer
title_fullStr Multimodal integration of radiology, pathology and genomics for prediction of response to PD-(L)1 blockade in patients with non-small cell lung cancer
title_full_unstemmed Multimodal integration of radiology, pathology and genomics for prediction of response to PD-(L)1 blockade in patients with non-small cell lung cancer
title_short Multimodal integration of radiology, pathology and genomics for prediction of response to PD-(L)1 blockade in patients with non-small cell lung cancer
title_sort multimodal integration of radiology, pathology and genomics for prediction of response to pd-(l)1 blockade in patients with non-small cell lung cancer
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9586871/
https://www.ncbi.nlm.nih.gov/pubmed/36038778
http://dx.doi.org/10.1038/s43018-022-00416-8
work_keys_str_mv AT vanguriramis multimodalintegrationofradiologypathologyandgenomicsforpredictionofresponsetopdl1blockadeinpatientswithnonsmallcelllungcancer
AT luojia multimodalintegrationofradiologypathologyandgenomicsforpredictionofresponsetopdl1blockadeinpatientswithnonsmallcelllungcancer
AT aukermanandrewt multimodalintegrationofradiologypathologyandgenomicsforpredictionofresponsetopdl1blockadeinpatientswithnonsmallcelllungcancer
AT eggerjacklynnv multimodalintegrationofradiologypathologyandgenomicsforpredictionofresponsetopdl1blockadeinpatientswithnonsmallcelllungcancer
AT fongchristopherj multimodalintegrationofradiologypathologyandgenomicsforpredictionofresponsetopdl1blockadeinpatientswithnonsmallcelllungcancer
AT horvatnatally multimodalintegrationofradiologypathologyandgenomicsforpredictionofresponsetopdl1blockadeinpatientswithnonsmallcelllungcancer
AT paganoandrew multimodalintegrationofradiologypathologyandgenomicsforpredictionofresponsetopdl1blockadeinpatientswithnonsmallcelllungcancer
AT araujofilhojosedearimateiabatista multimodalintegrationofradiologypathologyandgenomicsforpredictionofresponsetopdl1blockadeinpatientswithnonsmallcelllungcancer
AT geneslawluke multimodalintegrationofradiologypathologyandgenomicsforpredictionofresponsetopdl1blockadeinpatientswithnonsmallcelllungcancer
AT rizvihira multimodalintegrationofradiologypathologyandgenomicsforpredictionofresponsetopdl1blockadeinpatientswithnonsmallcelllungcancer
AT sosaramon multimodalintegrationofradiologypathologyandgenomicsforpredictionofresponsetopdl1blockadeinpatientswithnonsmallcelllungcancer
AT boehmkevinm multimodalintegrationofradiologypathologyandgenomicsforpredictionofresponsetopdl1blockadeinpatientswithnonsmallcelllungcancer
AT yangsooryum multimodalintegrationofradiologypathologyandgenomicsforpredictionofresponsetopdl1blockadeinpatientswithnonsmallcelllungcancer
AT boddfrancism multimodalintegrationofradiologypathologyandgenomicsforpredictionofresponsetopdl1blockadeinpatientswithnonsmallcelllungcancer
AT venturakatia multimodalintegrationofradiologypathologyandgenomicsforpredictionofresponsetopdl1blockadeinpatientswithnonsmallcelllungcancer
AT hollmanntravisj multimodalintegrationofradiologypathologyandgenomicsforpredictionofresponsetopdl1blockadeinpatientswithnonsmallcelllungcancer
AT ginsbergmichelles multimodalintegrationofradiologypathologyandgenomicsforpredictionofresponsetopdl1blockadeinpatientswithnonsmallcelllungcancer
AT gaojianjiong multimodalintegrationofradiologypathologyandgenomicsforpredictionofresponsetopdl1blockadeinpatientswithnonsmallcelllungcancer
AT multimodalintegrationofradiologypathologyandgenomicsforpredictionofresponsetopdl1blockadeinpatientswithnonsmallcelllungcancer
AT hellmannmatthewd multimodalintegrationofradiologypathologyandgenomicsforpredictionofresponsetopdl1blockadeinpatientswithnonsmallcelllungcancer
AT sauterjenniferl multimodalintegrationofradiologypathologyandgenomicsforpredictionofresponsetopdl1blockadeinpatientswithnonsmallcelllungcancer
AT shahsohrabp multimodalintegrationofradiologypathologyandgenomicsforpredictionofresponsetopdl1blockadeinpatientswithnonsmallcelllungcancer