Cargando…
Impact of random outliers in auto-segmented targets on radiotherapy treatment plans for glioblastoma
AIMS: To save time and have more consistent contours, fully automatic segmentation of targets and organs at risk (OAR) is a valuable asset in radiotherapy. Though current deep learning (DL) based models are on par with manual contouring, they are not perfect and typical errors, as false positives, o...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9587574/ https://www.ncbi.nlm.nih.gov/pubmed/36273161 http://dx.doi.org/10.1186/s13014-022-02137-9 |