Cargando…
A phase transition for finding needles in nonlinear haystacks with LASSO artificial neural networks
To fit sparse linear associations, a LASSO sparsity inducing penalty with a single hyperparameter provably allows to recover the important features (needles) with high probability in certain regimes even if the sample size is smaller than the dimension of the input vector (haystack). More recently l...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9587964/ https://www.ncbi.nlm.nih.gov/pubmed/36299529 http://dx.doi.org/10.1007/s11222-022-10169-0 |