Cargando…
Establishment of in vivo proximity labeling with biotin using TurboID in the filamentous fungus Sordaria macrospora
Proximity-dependent biotin identification (BioID) has emerged as a powerful methodology to identify proteins co-localizing with a given bait protein in vivo. The approach has been established in animal cells, plants and yeast but not yet in filamentous fungi. BioID relies on promiscuous biotin ligas...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9588061/ https://www.ncbi.nlm.nih.gov/pubmed/36272986 http://dx.doi.org/10.1038/s41598-022-22545-x |
Sumario: | Proximity-dependent biotin identification (BioID) has emerged as a powerful methodology to identify proteins co-localizing with a given bait protein in vivo. The approach has been established in animal cells, plants and yeast but not yet in filamentous fungi. BioID relies on promiscuous biotin ligases fused to bait proteins to covalently label neighboring proteins with biotin. Biotinylated proteins are specifically enriched through biotin affinity capture from denatured cell lysates and subsequently identified and quantified with liquid chromatography-mass spectrometry (LC–MS). In contrast to many other affinity capture approaches for studying protein–protein interactions, BioID does not rely on physical protein–protein binding within native cell lysates. This feature allows the identification of protein proximities of weak or transient and dynamic nature. Here, we demonstrate the application of BioID for the fungal model organism Sordaria macrospora (Sm) using the example of the STRIPAK complex interactor 1 (SCI1) of the well-characterized striatin-interacting phosphatase and kinase (SmSTRIPAK) complex as proof of concept. For the establishment of BioID in S. macrospora, a codon-optimized TurboID biotin ligase was fused to SCI1. Biotin capture of the known SmSTRIPAK components PRO11, SmMOB3, PRO22 and SmPP2Ac1 demonstrates the successful BioID application in S. macrospora. BioID proximity labeling approaches will provide a powerful proteomics tool for fungal biologists. |
---|