Cargando…
The AGMK1-9T7 cell model of neoplasia: Evolution of DNA copy-number aberrations and miRNA expression during transition from normal to metastatic cancer cells
To study neoplasia in tissue culture, cell lines representing the evolution of normal cells to tumor cells are needed. To produce such cells, we developed the AGMK1-9T7 cell line, established cell banks at 10-passage intervals, and characterized their biological properties. Here we examine the evolu...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9591059/ https://www.ncbi.nlm.nih.gov/pubmed/36279283 http://dx.doi.org/10.1371/journal.pone.0275394 |
_version_ | 1784814629249089536 |
---|---|
author | Lewis, Andrew M. Thomas, Rachael Breen, Matthew Peden, Keith Teferedegne, Belete Foseh, Gideon Motsinger-Reif, Alison Rotroff, Daniel Lewis, Gladys |
author_facet | Lewis, Andrew M. Thomas, Rachael Breen, Matthew Peden, Keith Teferedegne, Belete Foseh, Gideon Motsinger-Reif, Alison Rotroff, Daniel Lewis, Gladys |
author_sort | Lewis, Andrew M. |
collection | PubMed |
description | To study neoplasia in tissue culture, cell lines representing the evolution of normal cells to tumor cells are needed. To produce such cells, we developed the AGMK1-9T7 cell line, established cell banks at 10-passage intervals, and characterized their biological properties. Here we examine the evolution of chromosomal DNA copy-number aberrations and miRNA expression in this cell line from passage 1 to the acquisition of a tumorigenic phenotype at passage 40. We demonstrated the use of a human microarray platform for DNA copy-number profiling of AGMK1-9T7 cells using knowledge of synteny to ‘recode’ data from human chromosome coordinates to those of the African green monkey. This approach revealed the accumulation of DNA copy-number gains and losses in AGMK1-9T7 cells from passage 3 to passage 40, which spans the period in which neoplastic transformation occurred. These alterations occurred in the sequences of genes regulating DNA copy-number imbalance of several genes that regulate endothelial cell angiogenesis, survival, migration, and proliferation. Regarding miRNA expression, 195 miRNAs were up- or down-regulated at passage 1 at levels that appear to be biologically relevant (i.e., log2 fold change >2.0 (q<0.05)). At passage 10, the number of up/down-regulated miRNAs fell to 63; this number increased to 93 at passage 40. Principal-component analysis grouped these miRNAs into 3 clusters; miRNAs in sub-clusters of these groups could be correlated with initiation, promotion, and progression, stages that have been described for neoplastic development. Thirty-four of the AGMK1-9T7 miRNAs have been associated with these stages in human cancer. Based on these data, we propose that the evolution of AGMK1-9T7 cells represents a detailed model of neoplasia in vitro. |
format | Online Article Text |
id | pubmed-9591059 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-95910592022-10-25 The AGMK1-9T7 cell model of neoplasia: Evolution of DNA copy-number aberrations and miRNA expression during transition from normal to metastatic cancer cells Lewis, Andrew M. Thomas, Rachael Breen, Matthew Peden, Keith Teferedegne, Belete Foseh, Gideon Motsinger-Reif, Alison Rotroff, Daniel Lewis, Gladys PLoS One Research Article To study neoplasia in tissue culture, cell lines representing the evolution of normal cells to tumor cells are needed. To produce such cells, we developed the AGMK1-9T7 cell line, established cell banks at 10-passage intervals, and characterized their biological properties. Here we examine the evolution of chromosomal DNA copy-number aberrations and miRNA expression in this cell line from passage 1 to the acquisition of a tumorigenic phenotype at passage 40. We demonstrated the use of a human microarray platform for DNA copy-number profiling of AGMK1-9T7 cells using knowledge of synteny to ‘recode’ data from human chromosome coordinates to those of the African green monkey. This approach revealed the accumulation of DNA copy-number gains and losses in AGMK1-9T7 cells from passage 3 to passage 40, which spans the period in which neoplastic transformation occurred. These alterations occurred in the sequences of genes regulating DNA copy-number imbalance of several genes that regulate endothelial cell angiogenesis, survival, migration, and proliferation. Regarding miRNA expression, 195 miRNAs were up- or down-regulated at passage 1 at levels that appear to be biologically relevant (i.e., log2 fold change >2.0 (q<0.05)). At passage 10, the number of up/down-regulated miRNAs fell to 63; this number increased to 93 at passage 40. Principal-component analysis grouped these miRNAs into 3 clusters; miRNAs in sub-clusters of these groups could be correlated with initiation, promotion, and progression, stages that have been described for neoplastic development. Thirty-four of the AGMK1-9T7 miRNAs have been associated with these stages in human cancer. Based on these data, we propose that the evolution of AGMK1-9T7 cells represents a detailed model of neoplasia in vitro. Public Library of Science 2022-10-24 /pmc/articles/PMC9591059/ /pubmed/36279283 http://dx.doi.org/10.1371/journal.pone.0275394 Text en https://creativecommons.org/publicdomain/zero/1.0/This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 (https://creativecommons.org/publicdomain/zero/1.0/) public domain dedication. |
spellingShingle | Research Article Lewis, Andrew M. Thomas, Rachael Breen, Matthew Peden, Keith Teferedegne, Belete Foseh, Gideon Motsinger-Reif, Alison Rotroff, Daniel Lewis, Gladys The AGMK1-9T7 cell model of neoplasia: Evolution of DNA copy-number aberrations and miRNA expression during transition from normal to metastatic cancer cells |
title | The AGMK1-9T7 cell model of neoplasia: Evolution of DNA copy-number aberrations and miRNA expression during transition from normal to metastatic cancer cells |
title_full | The AGMK1-9T7 cell model of neoplasia: Evolution of DNA copy-number aberrations and miRNA expression during transition from normal to metastatic cancer cells |
title_fullStr | The AGMK1-9T7 cell model of neoplasia: Evolution of DNA copy-number aberrations and miRNA expression during transition from normal to metastatic cancer cells |
title_full_unstemmed | The AGMK1-9T7 cell model of neoplasia: Evolution of DNA copy-number aberrations and miRNA expression during transition from normal to metastatic cancer cells |
title_short | The AGMK1-9T7 cell model of neoplasia: Evolution of DNA copy-number aberrations and miRNA expression during transition from normal to metastatic cancer cells |
title_sort | agmk1-9t7 cell model of neoplasia: evolution of dna copy-number aberrations and mirna expression during transition from normal to metastatic cancer cells |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9591059/ https://www.ncbi.nlm.nih.gov/pubmed/36279283 http://dx.doi.org/10.1371/journal.pone.0275394 |
work_keys_str_mv | AT lewisandrewm theagmk19t7cellmodelofneoplasiaevolutionofdnacopynumberaberrationsandmirnaexpressionduringtransitionfromnormaltometastaticcancercells AT thomasrachael theagmk19t7cellmodelofneoplasiaevolutionofdnacopynumberaberrationsandmirnaexpressionduringtransitionfromnormaltometastaticcancercells AT breenmatthew theagmk19t7cellmodelofneoplasiaevolutionofdnacopynumberaberrationsandmirnaexpressionduringtransitionfromnormaltometastaticcancercells AT pedenkeith theagmk19t7cellmodelofneoplasiaevolutionofdnacopynumberaberrationsandmirnaexpressionduringtransitionfromnormaltometastaticcancercells AT teferedegnebelete theagmk19t7cellmodelofneoplasiaevolutionofdnacopynumberaberrationsandmirnaexpressionduringtransitionfromnormaltometastaticcancercells AT fosehgideon theagmk19t7cellmodelofneoplasiaevolutionofdnacopynumberaberrationsandmirnaexpressionduringtransitionfromnormaltometastaticcancercells AT motsingerreifalison theagmk19t7cellmodelofneoplasiaevolutionofdnacopynumberaberrationsandmirnaexpressionduringtransitionfromnormaltometastaticcancercells AT rotroffdaniel theagmk19t7cellmodelofneoplasiaevolutionofdnacopynumberaberrationsandmirnaexpressionduringtransitionfromnormaltometastaticcancercells AT lewisgladys theagmk19t7cellmodelofneoplasiaevolutionofdnacopynumberaberrationsandmirnaexpressionduringtransitionfromnormaltometastaticcancercells AT lewisandrewm agmk19t7cellmodelofneoplasiaevolutionofdnacopynumberaberrationsandmirnaexpressionduringtransitionfromnormaltometastaticcancercells AT thomasrachael agmk19t7cellmodelofneoplasiaevolutionofdnacopynumberaberrationsandmirnaexpressionduringtransitionfromnormaltometastaticcancercells AT breenmatthew agmk19t7cellmodelofneoplasiaevolutionofdnacopynumberaberrationsandmirnaexpressionduringtransitionfromnormaltometastaticcancercells AT pedenkeith agmk19t7cellmodelofneoplasiaevolutionofdnacopynumberaberrationsandmirnaexpressionduringtransitionfromnormaltometastaticcancercells AT teferedegnebelete agmk19t7cellmodelofneoplasiaevolutionofdnacopynumberaberrationsandmirnaexpressionduringtransitionfromnormaltometastaticcancercells AT fosehgideon agmk19t7cellmodelofneoplasiaevolutionofdnacopynumberaberrationsandmirnaexpressionduringtransitionfromnormaltometastaticcancercells AT motsingerreifalison agmk19t7cellmodelofneoplasiaevolutionofdnacopynumberaberrationsandmirnaexpressionduringtransitionfromnormaltometastaticcancercells AT rotroffdaniel agmk19t7cellmodelofneoplasiaevolutionofdnacopynumberaberrationsandmirnaexpressionduringtransitionfromnormaltometastaticcancercells AT lewisgladys agmk19t7cellmodelofneoplasiaevolutionofdnacopynumberaberrationsandmirnaexpressionduringtransitionfromnormaltometastaticcancercells |