Cargando…
SUMMIT: An integrative approach for better transcriptomic data imputation improves causal gene identification
Genes with moderate to low expression heritability may explain a large proportion of complex trait etiology, but such genes cannot be sufficiently captured in conventional transcriptome-wide association studies (TWASs), partly due to the relatively small available reference datasets for developing e...
Autores principales: | Zhang, Zichen, Bae, Ye Eun, Bradley, Jonathan R., Wu, Lang, Wu, Chong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9593997/ https://www.ncbi.nlm.nih.gov/pubmed/36284135 http://dx.doi.org/10.1038/s41467-022-34016-y |
Ejemplares similares
-
SUMMIT-FA: A new resource for improved transcriptome imputation using functional annotations
por: Melton, Hunter J., et al.
Publicado: (2023) -
MIMOSA: A resource consisting of improved methylome imputation models increases power to identify DNA methylation-phenotype associations
por: Melton, Hunter J., et al.
Publicado: (2023) -
A Review of Integrative Imputation for Multi-Omics Datasets
por: Song, Meng, et al.
Publicado: (2020) -
Imputation Without Doing Imputation: A New Method for the Detection of Non-Genotyped Causal Variants
por: Howey, Richard, et al.
Publicado: (2014) -
Imputation of adverse drug reactions: Causality assessment in hospitals
por: Varallo, Fabiana Rossi, et al.
Publicado: (2017)