Cargando…
KUALA: a machine learning-driven framework for kinase inhibitors repositioning
The family of protein kinases comprises more than 500 genes involved in numerous functions. Hence, their physiological dysfunction has paved the way toward drug discovery for cancer, cardiovascular, and inflammatory diseases. As a matter of fact, Kinase binding sites high similarity has a double rol...
Autores principales: | De Simone, Giada, Sardina, Davide Stefano, Gulotta, Maria Rita, Perricone, Ugo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9595087/ https://www.ncbi.nlm.nih.gov/pubmed/36284125 http://dx.doi.org/10.1038/s41598-022-22324-8 |
Ejemplares similares
-
A Computer-Based Methodology to Design Non-Standard Peptides Potentially Able to Prevent HOX-PBX1-Associated Cancer Diseases
por: Gulotta, Maria Rita, et al.
Publicado: (2021) -
APDB: a database on air pollutant characterization and similarity prediction
por: Viesi, Eva, et al.
Publicado: (2023) -
In Silico Insights towards the Identification of NLRP3 Druggable Hot Spots
por: Mekni, Nedra, et al.
Publicado: (2019) -
A Rational Design of α-Helix-Shaped Peptides Employing the Hydrogen-Bond Surrogate Approach: A Modulation Strategy for Ras-RasGRF1 Interaction in Neuropsychiatric Disorders
por: Gulotta, Maria Rita, et al.
Publicado: (2021) -
Exploring Machine Learning Techniques to Predict the Response to Omalizumab in Chronic Spontaneous Urticaria
por: Sardina, Davide Stefano, et al.
Publicado: (2021)