Cargando…

The Combination of Mesyl-Phosphoramidate Inter-Nucleotide Linkages and 2′-O-Methyl in Selected Positions in the Antisense Oligonucleotide Enhances the Performance of RNaseH1 Active PS-ASOs

Antisense oligonucleotides (ASOs) that mediate RNA target degradation by RNase H1 are used as drugs to treat various diseases. Previously we found that introduction of a single 2′-O-methyl (2′-OMe) modification in position 2 of the central deoxynucleotide region of a gapmer phosphorothioate (PS) ASO...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Lingdi, Liang, Xue-hai, De Hoyos, Cheryl Li, Migawa, Michael, Nichols, Joshua G., Freestone, Graeme, Tian, Jun, Seth, Punit P., Crooke, Stanley T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Mary Ann Liebert, Inc., publishers 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9595634/
https://www.ncbi.nlm.nih.gov/pubmed/35861704
http://dx.doi.org/10.1089/nat.2022.0005
Descripción
Sumario:Antisense oligonucleotides (ASOs) that mediate RNA target degradation by RNase H1 are used as drugs to treat various diseases. Previously we found that introduction of a single 2′-O-methyl (2′-OMe) modification in position 2 of the central deoxynucleotide region of a gapmer phosphorothioate (PS) ASO, in which several residues at the termini are 2′-methoxyethyl, 2′ constrained ethyl, or locked nucleic acid, dramatically reduced cytotoxicity with only modest effects on potency. More recently, we demonstrated that replacement of the PS linkage at position 2 or 3 in the gap with a mesyl-phosphoramidate (MsPA) linkage also significantly reduced toxicity without meaningful loss of potency and increased the elimination half-life of the ASOs. In this study, we evaluated the effects of the combination of MsPA linkages and 2′-OMe nucleotides on PS ASO performance. We found that two MsPA modifications at the 5′ end of the gap or in the 3′-wing of a Gap 2′-OMe PS ASO substantially increased the activity of ASOs with OMe at position 2 of the gap without altering the safety profile. Such effects were observed with multiple sequences in cells and animals. Thus, the MsPA modification improves the RNase H1 cleavage rate of PS ASOs with a 2′-OMe in the gap, significantly reduces binding of proteins involved in cytotoxicity, and prolongs elimination half-lives.