Cargando…

mTOR-regulated mitochondrial metabolism limits mycobacterium-induced cytotoxicity

Necrosis of macrophages in the granuloma, the hallmark immunological structure of tuberculosis, is a major pathogenic event that increases host susceptibility. Through a zebrafish forward genetic screen, we identified the mTOR kinase, a master regulator of metabolism, as an early host resistance fac...

Descripción completa

Detalles Bibliográficos
Autores principales: Pagán, Antonio J., Lee, Lauren J., Edwards-Hicks, Joy, Moens, Cecilia B., Tobin, David M., Busch-Nentwich, Elisabeth M., Pearce, Erika L., Ramakrishnan, Lalita
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9596383/
https://www.ncbi.nlm.nih.gov/pubmed/36103894
http://dx.doi.org/10.1016/j.cell.2022.08.018
_version_ 1784815859665993728
author Pagán, Antonio J.
Lee, Lauren J.
Edwards-Hicks, Joy
Moens, Cecilia B.
Tobin, David M.
Busch-Nentwich, Elisabeth M.
Pearce, Erika L.
Ramakrishnan, Lalita
author_facet Pagán, Antonio J.
Lee, Lauren J.
Edwards-Hicks, Joy
Moens, Cecilia B.
Tobin, David M.
Busch-Nentwich, Elisabeth M.
Pearce, Erika L.
Ramakrishnan, Lalita
author_sort Pagán, Antonio J.
collection PubMed
description Necrosis of macrophages in the granuloma, the hallmark immunological structure of tuberculosis, is a major pathogenic event that increases host susceptibility. Through a zebrafish forward genetic screen, we identified the mTOR kinase, a master regulator of metabolism, as an early host resistance factor in tuberculosis. We found that mTOR complex 1 protects macrophages from mycobacterium-induced death by enabling infection-induced increases in mitochondrial energy metabolism fueled by glycolysis. These metabolic adaptations are required to prevent mitochondrial damage and death caused by the secreted mycobacterial virulence determinant ESAT-6. Thus, the host can effectively counter this early critical mycobacterial virulence mechanism simply by regulating energy metabolism, thereby allowing pathogen-specific immune mechanisms time to develop. Our findings may explain why Mycobacterium tuberculosis, albeit humanity’s most lethal pathogen, is successful in only a minority of infected individuals.
format Online
Article
Text
id pubmed-9596383
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Cell Press
record_format MEDLINE/PubMed
spelling pubmed-95963832022-10-27 mTOR-regulated mitochondrial metabolism limits mycobacterium-induced cytotoxicity Pagán, Antonio J. Lee, Lauren J. Edwards-Hicks, Joy Moens, Cecilia B. Tobin, David M. Busch-Nentwich, Elisabeth M. Pearce, Erika L. Ramakrishnan, Lalita Cell Article Necrosis of macrophages in the granuloma, the hallmark immunological structure of tuberculosis, is a major pathogenic event that increases host susceptibility. Through a zebrafish forward genetic screen, we identified the mTOR kinase, a master regulator of metabolism, as an early host resistance factor in tuberculosis. We found that mTOR complex 1 protects macrophages from mycobacterium-induced death by enabling infection-induced increases in mitochondrial energy metabolism fueled by glycolysis. These metabolic adaptations are required to prevent mitochondrial damage and death caused by the secreted mycobacterial virulence determinant ESAT-6. Thus, the host can effectively counter this early critical mycobacterial virulence mechanism simply by regulating energy metabolism, thereby allowing pathogen-specific immune mechanisms time to develop. Our findings may explain why Mycobacterium tuberculosis, albeit humanity’s most lethal pathogen, is successful in only a minority of infected individuals. Cell Press 2022-09-29 /pmc/articles/PMC9596383/ /pubmed/36103894 http://dx.doi.org/10.1016/j.cell.2022.08.018 Text en © 2022 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Pagán, Antonio J.
Lee, Lauren J.
Edwards-Hicks, Joy
Moens, Cecilia B.
Tobin, David M.
Busch-Nentwich, Elisabeth M.
Pearce, Erika L.
Ramakrishnan, Lalita
mTOR-regulated mitochondrial metabolism limits mycobacterium-induced cytotoxicity
title mTOR-regulated mitochondrial metabolism limits mycobacterium-induced cytotoxicity
title_full mTOR-regulated mitochondrial metabolism limits mycobacterium-induced cytotoxicity
title_fullStr mTOR-regulated mitochondrial metabolism limits mycobacterium-induced cytotoxicity
title_full_unstemmed mTOR-regulated mitochondrial metabolism limits mycobacterium-induced cytotoxicity
title_short mTOR-regulated mitochondrial metabolism limits mycobacterium-induced cytotoxicity
title_sort mtor-regulated mitochondrial metabolism limits mycobacterium-induced cytotoxicity
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9596383/
https://www.ncbi.nlm.nih.gov/pubmed/36103894
http://dx.doi.org/10.1016/j.cell.2022.08.018
work_keys_str_mv AT paganantonioj mtorregulatedmitochondrialmetabolismlimitsmycobacteriuminducedcytotoxicity
AT leelaurenj mtorregulatedmitochondrialmetabolismlimitsmycobacteriuminducedcytotoxicity
AT edwardshicksjoy mtorregulatedmitochondrialmetabolismlimitsmycobacteriuminducedcytotoxicity
AT moensceciliab mtorregulatedmitochondrialmetabolismlimitsmycobacteriuminducedcytotoxicity
AT tobindavidm mtorregulatedmitochondrialmetabolismlimitsmycobacteriuminducedcytotoxicity
AT buschnentwichelisabethm mtorregulatedmitochondrialmetabolismlimitsmycobacteriuminducedcytotoxicity
AT pearceerikal mtorregulatedmitochondrialmetabolismlimitsmycobacteriuminducedcytotoxicity
AT ramakrishnanlalita mtorregulatedmitochondrialmetabolismlimitsmycobacteriuminducedcytotoxicity