Cargando…
Combining denoising of RNA-seq data and flux balance analysis for cluster analysis of single cells
BACKGROUND: Sophisticated methods to properly pre-process and analyze the increasing collection of single-cell RNA sequencing (scRNA-seq) data are increasingly being developed. On the contrary, the best practices to integrate these data into metabolic networks, aiming at describing metabolic phenoty...
Autores principales: | Galuzzi, Bruno G., Vanoni, Marco, Damiani, Chiara |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9597960/ https://www.ncbi.nlm.nih.gov/pubmed/36284276 http://dx.doi.org/10.1186/s12859-022-04967-6 |
Ejemplares similares
-
Integration of single-cell RNA-seq data into population models to characterize cancer metabolism
por: Damiani, Chiara, et al.
Publicado: (2019) -
Sparsity-Penalized Stacked Denoising Autoencoders for Imputing Single-Cell RNA-seq Data
por: Chi, Weilai, et al.
Publicado: (2020) -
INTEGRATE: Model-based multi-omics data integration to characterize multi-level metabolic regulation
por: Di Filippo, Marzia, et al.
Publicado: (2022) -
Single-cell RNA-seq denoising using a deep count autoencoder
por: Eraslan, Gökcen, et al.
Publicado: (2019) -
popFBA: tackling intratumour heterogeneity with Flux Balance Analysis
por: Damiani, Chiara, et al.
Publicado: (2017)