Cargando…
Improvement of the Antibacterial Activity of Phage Lysin-Derived Peptide P87 through Maximization of Physicochemical Properties and Assessment of Its Therapeutic Potential
Phage lysins are a promising alternative to common antibiotic chemotherapy. However, they have been regarded as less effective against Gram-negative pathogens unless engineered, e.g., by fusing them to antimicrobial peptides (AMPs). AMPs themselves pose an alternative to antibiotics. In this work, A...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9598152/ https://www.ncbi.nlm.nih.gov/pubmed/36290106 http://dx.doi.org/10.3390/antibiotics11101448 |
_version_ | 1784816261155258368 |
---|---|
author | Vázquez, Roberto Doménech-Sánchez, Antonio Ruiz, Susana Sempere, Julio Yuste, Jose Albertí, Sebastián García, Pedro |
author_facet | Vázquez, Roberto Doménech-Sánchez, Antonio Ruiz, Susana Sempere, Julio Yuste, Jose Albertí, Sebastián García, Pedro |
author_sort | Vázquez, Roberto |
collection | PubMed |
description | Phage lysins are a promising alternative to common antibiotic chemotherapy. However, they have been regarded as less effective against Gram-negative pathogens unless engineered, e.g., by fusing them to antimicrobial peptides (AMPs). AMPs themselves pose an alternative to antibiotics. In this work, AMP P87, previously derived from a phage lysin (Pae87) with a presumed nonenzymatic mode-of-action, was investigated to improve its antibacterial activity. Five modifications were designed to maximize the hydrophobic moment and net charge, producing the modified peptide P88, which was evaluated in terms of bactericidal activity, cytotoxicity, MICs or synergy with antibiotics. P88 had a better bactericidal performance than P87 (an average of 6.0 vs. 1.5 log-killing activity on Pseudomonas aeruginosa strains treated with 10 µM). This did not correlate with a dramatic increase in cytotoxicity as assayed on A549 cell cultures. P88 was active against a range of P. aeruginosa isolates, with no intrinsic resistance factors identified. Synergy with some antibiotics was observed in vitro, in complex media, and in a respiratory infection mouse model. Therefore, P88 can be a new addition to the therapeutic toolbox of alternative antimicrobials against Gram-negative pathogens as a sole therapeutic, a complement to antibiotics, or a part to engineer proteinaceous antimicrobials. |
format | Online Article Text |
id | pubmed-9598152 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-95981522022-10-27 Improvement of the Antibacterial Activity of Phage Lysin-Derived Peptide P87 through Maximization of Physicochemical Properties and Assessment of Its Therapeutic Potential Vázquez, Roberto Doménech-Sánchez, Antonio Ruiz, Susana Sempere, Julio Yuste, Jose Albertí, Sebastián García, Pedro Antibiotics (Basel) Article Phage lysins are a promising alternative to common antibiotic chemotherapy. However, they have been regarded as less effective against Gram-negative pathogens unless engineered, e.g., by fusing them to antimicrobial peptides (AMPs). AMPs themselves pose an alternative to antibiotics. In this work, AMP P87, previously derived from a phage lysin (Pae87) with a presumed nonenzymatic mode-of-action, was investigated to improve its antibacterial activity. Five modifications were designed to maximize the hydrophobic moment and net charge, producing the modified peptide P88, which was evaluated in terms of bactericidal activity, cytotoxicity, MICs or synergy with antibiotics. P88 had a better bactericidal performance than P87 (an average of 6.0 vs. 1.5 log-killing activity on Pseudomonas aeruginosa strains treated with 10 µM). This did not correlate with a dramatic increase in cytotoxicity as assayed on A549 cell cultures. P88 was active against a range of P. aeruginosa isolates, with no intrinsic resistance factors identified. Synergy with some antibiotics was observed in vitro, in complex media, and in a respiratory infection mouse model. Therefore, P88 can be a new addition to the therapeutic toolbox of alternative antimicrobials against Gram-negative pathogens as a sole therapeutic, a complement to antibiotics, or a part to engineer proteinaceous antimicrobials. MDPI 2022-10-21 /pmc/articles/PMC9598152/ /pubmed/36290106 http://dx.doi.org/10.3390/antibiotics11101448 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Vázquez, Roberto Doménech-Sánchez, Antonio Ruiz, Susana Sempere, Julio Yuste, Jose Albertí, Sebastián García, Pedro Improvement of the Antibacterial Activity of Phage Lysin-Derived Peptide P87 through Maximization of Physicochemical Properties and Assessment of Its Therapeutic Potential |
title | Improvement of the Antibacterial Activity of Phage Lysin-Derived Peptide P87 through Maximization of Physicochemical Properties and Assessment of Its Therapeutic Potential |
title_full | Improvement of the Antibacterial Activity of Phage Lysin-Derived Peptide P87 through Maximization of Physicochemical Properties and Assessment of Its Therapeutic Potential |
title_fullStr | Improvement of the Antibacterial Activity of Phage Lysin-Derived Peptide P87 through Maximization of Physicochemical Properties and Assessment of Its Therapeutic Potential |
title_full_unstemmed | Improvement of the Antibacterial Activity of Phage Lysin-Derived Peptide P87 through Maximization of Physicochemical Properties and Assessment of Its Therapeutic Potential |
title_short | Improvement of the Antibacterial Activity of Phage Lysin-Derived Peptide P87 through Maximization of Physicochemical Properties and Assessment of Its Therapeutic Potential |
title_sort | improvement of the antibacterial activity of phage lysin-derived peptide p87 through maximization of physicochemical properties and assessment of its therapeutic potential |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9598152/ https://www.ncbi.nlm.nih.gov/pubmed/36290106 http://dx.doi.org/10.3390/antibiotics11101448 |
work_keys_str_mv | AT vazquezroberto improvementoftheantibacterialactivityofphagelysinderivedpeptidep87throughmaximizationofphysicochemicalpropertiesandassessmentofitstherapeuticpotential AT domenechsanchezantonio improvementoftheantibacterialactivityofphagelysinderivedpeptidep87throughmaximizationofphysicochemicalpropertiesandassessmentofitstherapeuticpotential AT ruizsusana improvementoftheantibacterialactivityofphagelysinderivedpeptidep87throughmaximizationofphysicochemicalpropertiesandassessmentofitstherapeuticpotential AT semperejulio improvementoftheantibacterialactivityofphagelysinderivedpeptidep87throughmaximizationofphysicochemicalpropertiesandassessmentofitstherapeuticpotential AT yustejose improvementoftheantibacterialactivityofphagelysinderivedpeptidep87throughmaximizationofphysicochemicalpropertiesandassessmentofitstherapeuticpotential AT albertisebastian improvementoftheantibacterialactivityofphagelysinderivedpeptidep87throughmaximizationofphysicochemicalpropertiesandassessmentofitstherapeuticpotential AT garciapedro improvementoftheantibacterialactivityofphagelysinderivedpeptidep87throughmaximizationofphysicochemicalpropertiesandassessmentofitstherapeuticpotential |