Cargando…

Maximizing Cumulative Trypsin Activity with Calcium at Elevated Temperature for Enhanced Bottom-Up Proteome Analysis

SIMPLE SUMMARY: Trypsin is frequently employed to cleave proteins ahead of mass spectrometry characterization. Traditionally, enzyme digestion involves overnight incubation of proteins at 37 °C, which is time consuming though still may yield poor digestion efficiency. While raising the temperature s...

Descripción completa

Detalles Bibliográficos
Autores principales: Nickerson, Jessica L., Doucette, Alan A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9598648/
https://www.ncbi.nlm.nih.gov/pubmed/36290348
http://dx.doi.org/10.3390/biology11101444
Descripción
Sumario:SIMPLE SUMMARY: Trypsin is frequently employed to cleave proteins ahead of mass spectrometry characterization. Traditionally, enzyme digestion involves overnight incubation of proteins at 37 °C, which is time consuming though still may yield poor digestion efficiency. While raising the temperature should theoretically accelerate the digestion, it also destabilizes the enzyme and promotes trypsin de-activation. We therefore questioned whether elevated temperature is beneficial for improving tryptic digestion. Here, we quantify protein digestion kinetics at elevated temperatures for calcium-stabilized trypsin and enforce the critical importance of calcium ions to preserve the enzyme. We quantitatively demonstrate that 1 h at 47 °C provides a superior digest when compared to conventional (overnight, 37 °C) processing of the proteome. The practical impact of our enhanced digestion protocol is shown through bottom-up mass spectrometry analysis of a complex proteome mixture. ABSTRACT: Bottom-up proteomics relies on efficient trypsin digestion ahead of MS analysis. Prior studies have suggested digestion at elevated temperature to accelerate proteolysis, showing an increase in the number of MS-identified peptides. However, improved sequence coverage may be a consequence of partial digestion, as higher temperatures destabilize and degrade the enzyme, causing enhanced activity to be short-lived. Here, we use a spectroscopic (BAEE) assay to quantify calcium-stabilized trypsin activity over the complete time course of a digestion. At 47 °C, the addition of calcium contributes a 25-fold enhancement in trypsin stability. Higher temperatures show a net decrease in cumulative trypsin activity. Through bottom-up MS analysis of a yeast proteome extract, we demonstrate that a 1 h digestion at 47 °C with 10 mM Ca(2+) provides a 29% increase in the total number of peptide identifications. Simultaneously, the quantitative proportion of peptides with 1 or more missed cleavage sites was diminished in the 47 °C digestion, supporting enhanced digestion efficiency with the 1 h protocol. Trypsin specificity also improves, as seen by a drop in the quantitative abundance of semi-tryptic peptides. Our enhanced digestion protocol improves throughput for bottom-up sample preparation and validates the approach as a robust, low-cost alternative to maximized protein digestion efficiency.