Cargando…
L-Tetrolet Pattern-Based Sleep Stage Classification Model Using Balanced EEG Datasets
Background: Sleep stage classification is a crucial process for the diagnosis of sleep or sleep-related diseases. Currently, this process is based on manual electroencephalogram (EEG) analysis, which is resource-intensive and error-prone. Various machine learning models have been recommended to stan...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9600064/ https://www.ncbi.nlm.nih.gov/pubmed/36292199 http://dx.doi.org/10.3390/diagnostics12102510 |