Cargando…
L-Tetrolet Pattern-Based Sleep Stage Classification Model Using Balanced EEG Datasets
Background: Sleep stage classification is a crucial process for the diagnosis of sleep or sleep-related diseases. Currently, this process is based on manual electroencephalogram (EEG) analysis, which is resource-intensive and error-prone. Various machine learning models have been recommended to stan...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9600064/ https://www.ncbi.nlm.nih.gov/pubmed/36292199 http://dx.doi.org/10.3390/diagnostics12102510 |
_version_ | 1784816748272287744 |
---|---|
author | Barua, Prabal Datta Tuncer, Ilknur Aydemir, Emrah Faust, Oliver Chakraborty, Subrata Subbhuraam, Vinithasree Tuncer, Turker Dogan, Sengul Acharya, U. Rajendra |
author_facet | Barua, Prabal Datta Tuncer, Ilknur Aydemir, Emrah Faust, Oliver Chakraborty, Subrata Subbhuraam, Vinithasree Tuncer, Turker Dogan, Sengul Acharya, U. Rajendra |
author_sort | Barua, Prabal Datta |
collection | PubMed |
description | Background: Sleep stage classification is a crucial process for the diagnosis of sleep or sleep-related diseases. Currently, this process is based on manual electroencephalogram (EEG) analysis, which is resource-intensive and error-prone. Various machine learning models have been recommended to standardize and automate the analysis process to address these problems. Materials and methods: The well-known cyclic alternating pattern (CAP) sleep dataset is used to train and test an L-tetrolet pattern-based sleep stage classification model in this research. By using this dataset, the following three cases are created, and they are: Insomnia, Normal, and Fused cases. For each of these cases, the machine learning model is tasked with identifying six sleep stages. The model is structured in terms of feature generation, feature selection, and classification. Feature generation is established with a new L-tetrolet (Tetris letter) function and multiple pooling decomposition for level creation. We fuse ReliefF and iterative neighborhood component analysis (INCA) feature selection using a threshold value. The hybrid and iterative feature selectors are named threshold selection-based ReliefF and INCA (TSRFINCA). The selected features are classified using a cubic support vector machine. Results: The presented L-tetrolet pattern and TSRFINCA-based sleep stage classification model yield 95.43%, 91.05%, and 92.31% accuracies for Insomnia, Normal dataset, and Fused cases, respectively. Conclusion: The recommended L-tetrolet pattern and TSRFINCA-based model push the envelope of current knowledge engineering by accurately classifying sleep stages even in the presence of sleep disorders. |
format | Online Article Text |
id | pubmed-9600064 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96000642022-10-27 L-Tetrolet Pattern-Based Sleep Stage Classification Model Using Balanced EEG Datasets Barua, Prabal Datta Tuncer, Ilknur Aydemir, Emrah Faust, Oliver Chakraborty, Subrata Subbhuraam, Vinithasree Tuncer, Turker Dogan, Sengul Acharya, U. Rajendra Diagnostics (Basel) Article Background: Sleep stage classification is a crucial process for the diagnosis of sleep or sleep-related diseases. Currently, this process is based on manual electroencephalogram (EEG) analysis, which is resource-intensive and error-prone. Various machine learning models have been recommended to standardize and automate the analysis process to address these problems. Materials and methods: The well-known cyclic alternating pattern (CAP) sleep dataset is used to train and test an L-tetrolet pattern-based sleep stage classification model in this research. By using this dataset, the following three cases are created, and they are: Insomnia, Normal, and Fused cases. For each of these cases, the machine learning model is tasked with identifying six sleep stages. The model is structured in terms of feature generation, feature selection, and classification. Feature generation is established with a new L-tetrolet (Tetris letter) function and multiple pooling decomposition for level creation. We fuse ReliefF and iterative neighborhood component analysis (INCA) feature selection using a threshold value. The hybrid and iterative feature selectors are named threshold selection-based ReliefF and INCA (TSRFINCA). The selected features are classified using a cubic support vector machine. Results: The presented L-tetrolet pattern and TSRFINCA-based sleep stage classification model yield 95.43%, 91.05%, and 92.31% accuracies for Insomnia, Normal dataset, and Fused cases, respectively. Conclusion: The recommended L-tetrolet pattern and TSRFINCA-based model push the envelope of current knowledge engineering by accurately classifying sleep stages even in the presence of sleep disorders. MDPI 2022-10-16 /pmc/articles/PMC9600064/ /pubmed/36292199 http://dx.doi.org/10.3390/diagnostics12102510 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Barua, Prabal Datta Tuncer, Ilknur Aydemir, Emrah Faust, Oliver Chakraborty, Subrata Subbhuraam, Vinithasree Tuncer, Turker Dogan, Sengul Acharya, U. Rajendra L-Tetrolet Pattern-Based Sleep Stage Classification Model Using Balanced EEG Datasets |
title | L-Tetrolet Pattern-Based Sleep Stage Classification Model Using Balanced EEG Datasets |
title_full | L-Tetrolet Pattern-Based Sleep Stage Classification Model Using Balanced EEG Datasets |
title_fullStr | L-Tetrolet Pattern-Based Sleep Stage Classification Model Using Balanced EEG Datasets |
title_full_unstemmed | L-Tetrolet Pattern-Based Sleep Stage Classification Model Using Balanced EEG Datasets |
title_short | L-Tetrolet Pattern-Based Sleep Stage Classification Model Using Balanced EEG Datasets |
title_sort | l-tetrolet pattern-based sleep stage classification model using balanced eeg datasets |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9600064/ https://www.ncbi.nlm.nih.gov/pubmed/36292199 http://dx.doi.org/10.3390/diagnostics12102510 |
work_keys_str_mv | AT baruaprabaldatta ltetroletpatternbasedsleepstageclassificationmodelusingbalancedeegdatasets AT tuncerilknur ltetroletpatternbasedsleepstageclassificationmodelusingbalancedeegdatasets AT aydemiremrah ltetroletpatternbasedsleepstageclassificationmodelusingbalancedeegdatasets AT faustoliver ltetroletpatternbasedsleepstageclassificationmodelusingbalancedeegdatasets AT chakrabortysubrata ltetroletpatternbasedsleepstageclassificationmodelusingbalancedeegdatasets AT subbhuraamvinithasree ltetroletpatternbasedsleepstageclassificationmodelusingbalancedeegdatasets AT tuncerturker ltetroletpatternbasedsleepstageclassificationmodelusingbalancedeegdatasets AT dogansengul ltetroletpatternbasedsleepstageclassificationmodelusingbalancedeegdatasets AT acharyaurajendra ltetroletpatternbasedsleepstageclassificationmodelusingbalancedeegdatasets |