Cargando…

Rotavirus Downregulates Tyrosine Hydroxylase in the Noradrenergic Sympathetic Nervous System in Ileum, Early in Infection and Simultaneously with Increased Intestinal Transit and Altered Brain Activities

While rotavirus diarrhea has been considered to occur only due to intrinsic intestinal effects within the enteric nervous system, we provide evidence for central nervous system control underlying the clinical symptomology. Our data visualize infection by large-scale three-dimensional (3D) volumetric...

Descripción completa

Detalles Bibliográficos
Autores principales: Hellysaz, Arash, Svensson, Lennart, Hagbom, Marie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9600178/
https://www.ncbi.nlm.nih.gov/pubmed/36094089
http://dx.doi.org/10.1128/mbio.01387-22
Descripción
Sumario:While rotavirus diarrhea has been considered to occur only due to intrinsic intestinal effects within the enteric nervous system, we provide evidence for central nervous system control underlying the clinical symptomology. Our data visualize infection by large-scale three-dimensional (3D) volumetric tissue imaging of a mouse model and demonstrate that rotavirus infection disrupts the homeostasis of the autonomous system by downregulating tyrosine hydroxylase in the noradrenergic sympathetic nervous system in ileum, concomitant with increased intestinal transit. Interestingly, the nervous response was found to occur before the onset of clinical symptoms. In adult infected animals, we found increased pS6 immunoreactivity in the area postrema of the brain stem and decreased phosphorylated STAT5-immunoreactive neurons in the bed nucleus of the stria terminalis, which has been associated with autonomic control, including stress response. Our observations contribute to knowledge of how rotavirus infection induces gut-nerve-brain interaction early in the disease.