Cargando…
Folding Mechanism and Aggregation Propensity of the KH0 Domain of FMRP and Its R138Q Pathological Variant
The K-homology (KH) domains are small, structurally conserved domains found in proteins of different origins characterized by a central conserved βααβ “core” and a GxxG motif in the loop between the two helices of the KH core. In the eukaryotic KHI type, additional αβ elements decorate the “core” at...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9603430/ https://www.ncbi.nlm.nih.gov/pubmed/36293035 http://dx.doi.org/10.3390/ijms232012178 |
Sumario: | The K-homology (KH) domains are small, structurally conserved domains found in proteins of different origins characterized by a central conserved βααβ “core” and a GxxG motif in the loop between the two helices of the KH core. In the eukaryotic KHI type, additional αβ elements decorate the “core” at the C-terminus. Proteins containing KH domains perform different functions and several diseases have been associated with mutations in these domains, including those in the fragile X mental retardation protein (FMRP). FMRP is an RNA-binding protein crucial for the control of RNA metabolism whose lack or mutations lead to fragile X syndrome (FXS). Among missense mutations, the R138Q substitution is in the KH0 degenerated domain lacking the classical GxxG motif. By combining equilibrium and kinetic experiments, we present a characterization of the folding mechanism of the KH0 domain from the FMRP wild-type and of the R138Q variant showing that in both cases the folding mechanism implies the accumulation of an on-pathway transient intermediate. Moreover, by exploiting a battery of biophysical techniques, we show that the KH0 domain has the propensity to form amyloid-like aggregates in mild conditions in vitro and that the R138Q mutation leads to a general destabilization of the protein and to an increased fibrillogenesis propensity. |
---|