Cargando…
A novel method for site-specific chemical SUMOylation: SUMOylation of Hsp90 modulates co-chaperone binding in vitro
SUMO is covalently attached to lysine side chains in target proteins by the action of a cascade of E1, E2, and E3 ligases. Unlike ubiquitin, SUMO does not target proteins for degradation but rather plays a regulatory role in activating target proteins or directing them to multiprotein complexes. Iso...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
De Gruyter
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9605714/ https://www.ncbi.nlm.nih.gov/pubmed/30265648 http://dx.doi.org/10.1515/hsz-2018-0251 |
_version_ | 1784818134137438208 |
---|---|
author | Wolmarans, Annemarie Kwantes, Allison LaPointe, Paul |
author_facet | Wolmarans, Annemarie Kwantes, Allison LaPointe, Paul |
author_sort | Wolmarans, Annemarie |
collection | PubMed |
description | SUMO is covalently attached to lysine side chains in target proteins by the action of a cascade of E1, E2, and E3 ligases. Unlike ubiquitin, SUMO does not target proteins for degradation but rather plays a regulatory role in activating target proteins or directing them to multiprotein complexes. Isolating SUMOylated proteins from native sources is challenging because of the low stoichiometry of SUMOylation that occurs for any given target protein in cells. Here we report a novel strategy to couple SUMO to the site of a target lysine for the purpose of in vitro study. Introduction of a single cysteine after the C terminal diglycine motif and a cysteine in place of a target lysine in a substrate protein allows for efficient and specific crosslinking of SUMO using a homo-bifunctional maleimide crosslinker. We demonstrate that SUMO can be crosslinked in this manner to amino acid position 178 in the dimeric molecular chaperone, Hsp90. Chemically SUMOylated Hsp90 has very similar ATPase activity compared to unmodified Hsp90 but displays preferential co-chaperone binding in vivo. Our novel strategy can easily be applied to other SUMOylated or ubiquitinated target protein in vitro. |
format | Online Article Text |
id | pubmed-9605714 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | De Gruyter |
record_format | MEDLINE/PubMed |
spelling | pubmed-96057142022-11-07 A novel method for site-specific chemical SUMOylation: SUMOylation of Hsp90 modulates co-chaperone binding in vitro Wolmarans, Annemarie Kwantes, Allison LaPointe, Paul Biol Chem Protein Structure and Function SUMO is covalently attached to lysine side chains in target proteins by the action of a cascade of E1, E2, and E3 ligases. Unlike ubiquitin, SUMO does not target proteins for degradation but rather plays a regulatory role in activating target proteins or directing them to multiprotein complexes. Isolating SUMOylated proteins from native sources is challenging because of the low stoichiometry of SUMOylation that occurs for any given target protein in cells. Here we report a novel strategy to couple SUMO to the site of a target lysine for the purpose of in vitro study. Introduction of a single cysteine after the C terminal diglycine motif and a cysteine in place of a target lysine in a substrate protein allows for efficient and specific crosslinking of SUMO using a homo-bifunctional maleimide crosslinker. We demonstrate that SUMO can be crosslinked in this manner to amino acid position 178 in the dimeric molecular chaperone, Hsp90. Chemically SUMOylated Hsp90 has very similar ATPase activity compared to unmodified Hsp90 but displays preferential co-chaperone binding in vivo. Our novel strategy can easily be applied to other SUMOylated or ubiquitinated target protein in vitro. De Gruyter 2019-04-24 2018-10-12 /pmc/articles/PMC9605714/ /pubmed/30265648 http://dx.doi.org/10.1515/hsz-2018-0251 Text en ©2019 Annemarie Wolmarans et al., published by De Gruyter, Berlin/Boston https://creativecommons.org/licenses/by/4.0/This work is licensed under the Creative Commons Attribution 4.0 International License. |
spellingShingle | Protein Structure and Function Wolmarans, Annemarie Kwantes, Allison LaPointe, Paul A novel method for site-specific chemical SUMOylation: SUMOylation of Hsp90 modulates co-chaperone binding in vitro |
title | A novel method for site-specific chemical SUMOylation: SUMOylation of Hsp90 modulates co-chaperone binding in vitro
|
title_full | A novel method for site-specific chemical SUMOylation: SUMOylation of Hsp90 modulates co-chaperone binding in vitro
|
title_fullStr | A novel method for site-specific chemical SUMOylation: SUMOylation of Hsp90 modulates co-chaperone binding in vitro
|
title_full_unstemmed | A novel method for site-specific chemical SUMOylation: SUMOylation of Hsp90 modulates co-chaperone binding in vitro
|
title_short | A novel method for site-specific chemical SUMOylation: SUMOylation of Hsp90 modulates co-chaperone binding in vitro
|
title_sort | novel method for site-specific chemical sumoylation: sumoylation of hsp90 modulates co-chaperone binding in vitro |
topic | Protein Structure and Function |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9605714/ https://www.ncbi.nlm.nih.gov/pubmed/30265648 http://dx.doi.org/10.1515/hsz-2018-0251 |
work_keys_str_mv | AT wolmaransannemarie anovelmethodforsitespecificchemicalsumoylationsumoylationofhsp90modulatescochaperonebindinginvitro AT kwantesallison anovelmethodforsitespecificchemicalsumoylationsumoylationofhsp90modulatescochaperonebindinginvitro AT lapointepaul anovelmethodforsitespecificchemicalsumoylationsumoylationofhsp90modulatescochaperonebindinginvitro AT wolmaransannemarie novelmethodforsitespecificchemicalsumoylationsumoylationofhsp90modulatescochaperonebindinginvitro AT kwantesallison novelmethodforsitespecificchemicalsumoylationsumoylationofhsp90modulatescochaperonebindinginvitro AT lapointepaul novelmethodforsitespecificchemicalsumoylationsumoylationofhsp90modulatescochaperonebindinginvitro |