Cargando…
Criterion for Selective Area Growth of III-V Nanowires
A model for the nucleation of vertical or planar III-V nanowires (NWs) in selective area growth (SAG) on masked substrates with regular arrays of openings is developed. The optimal SAG zone, with NW nucleation within the openings and the absence of parasitic III-V crystallites or group III droplets...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9606971/ https://www.ncbi.nlm.nih.gov/pubmed/36296889 http://dx.doi.org/10.3390/nano12203698 |
Sumario: | A model for the nucleation of vertical or planar III-V nanowires (NWs) in selective area growth (SAG) on masked substrates with regular arrays of openings is developed. The optimal SAG zone, with NW nucleation within the openings and the absence of parasitic III-V crystallites or group III droplets on the mask, is established, taking into account the minimum chemical potential of the III-V pairs required for nucleation on different surfaces, and the surface diffusion of the group III adatoms. The SAG maps are plotted in terms of the material fluxes versus the temperature. The non-trivial behavior of the SAG window, with the opening size and pitch, is analyzed, depending on the direction of the diffusion flux of the group III adatoms into or from the openings. A good correlation of the model with the data on the SAG of vertical GaN NWs and planar GaAs and InAs NWs by molecular beam epitaxy (MBE) is demonstrated. |
---|