Cargando…

Electrochemical Determination of Morin in Natural Food Using a Chitosan–Graphene Glassy Carbon Modified Electrode

This report presents a new application for the chitosan–graphene glassy carbon electrode (Ch-G/GCE) system in the determination of the hydroxyflavonoid morin (MR), one of the flavonoids with the highest favorable activity for people, due to its natural properties by square-wave voltammetry (SWV). Th...

Descripción completa

Detalles Bibliográficos
Autores principales: Nagles, Edgar, Bello, Monica, Hurtado, John J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9608833/
https://www.ncbi.nlm.nih.gov/pubmed/36298130
http://dx.doi.org/10.3390/s22207780
Descripción
Sumario:This report presents a new application for the chitosan–graphene glassy carbon electrode (Ch-G/GCE) system in the determination of the hydroxyflavonoid morin (MR), one of the flavonoids with the highest favorable activity for people, due to its natural properties by square-wave voltammetry (SWV). The anodic peak current for MR was observed at 0.50 V with an increase of 73% compared with the glassy carbon electrode unmodified. The surface areas of Ch-G/GCE, Ch/GCE and GCE evaluated by cyclic voltammetry were 0.140, 0.053 and 0.011 cm(2), respectively. Additionally, an increase greater than 100% compared to the electrode without modification was observed. The detection limit was 0.30 µmol/L for MR, and the relative standard deviations (RSDs) were 1.8% (n = 6). Possible interferences as quercetin, rutin, and applications in real samples were also evaluated with very acceptable results.