Cargando…
Qualitative and Quantitative Detection of Food Adulteration Using a Smart E-Nose
Food adulteration is the most serious problem found in the food industry as it harms people’s healths and undermines their beliefs. The present study is focused on designing and developing a smart electronic nose (SE-Nose) for the qualitative and quantitative fast-track detection of food adulteratio...
Autores principales: | Pulluri, Kranthi Kumar, Kumar, Vaegae Naveen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9609363/ https://www.ncbi.nlm.nih.gov/pubmed/36298140 http://dx.doi.org/10.3390/s22207789 |
Ejemplares similares
-
A Machine Learning Method for the Quantitative Detection of Adulterated Meat Using a MOS-Based E-Nose
por: Huang, Changquan, et al.
Publicado: (2022) -
Development of CNN-LSTM combinational architecture for COVID-19 detection
por: Narula, Abhinav, et al.
Publicado: (2022) -
Electronic nose dataset for pork adulteration in beef
por: Sarno, Riyanarto, et al.
Publicado: (2020) -
Aromatic Fingerprints: VOC Analysis with E-Nose and GC-MS for Rapid Detection of Adulteration in Sesame Oil
por: Aghili, Nadia Sadat, et al.
Publicado: (2023) -
Hand hygiene monitoring and compliance system using convolution neural networks
por: Nagar, Anubha, et al.
Publicado: (2022)