Cargando…

A Systematic Calibration Modeling Method for Redundant INS with Multi-Sensors Non-Orthogonal Configuration

Because of the non-orthogonal configuration of multi-sensors, the redundant inertial navigation system (INS) has a more complex error model compared with the traditional orthogonal INS, and the complexity of sensors configuration also increases the difficulty of error separation. Based on sufficient...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Chunfeng, Wei, Guo, Wang, Lin, Wang, Qi, Liao, Zhikun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9609688/
https://www.ncbi.nlm.nih.gov/pubmed/36296037
http://dx.doi.org/10.3390/mi13101684
Descripción
Sumario:Because of the non-orthogonal configuration of multi-sensors, the redundant inertial navigation system (INS) has a more complex error model compared with the traditional orthogonal INS, and the complexity of sensors configuration also increases the difficulty of error separation. Based on sufficient analysis of the error principle of redundant IMUs, a generalized high-accuracy calibration modeling method which is suitable for filtering method systematic calibration is summarized in this paper, and it has been applied to an RIMU prototype consisting of four ring laser gyros (RLGs) and four quartz accelerometers. Through the rotational excitation of the three-axis turntable in the laboratory, the high-precision filtering method systematic calibration of the RIMU is achieved, and static navigation and dynamic vehicle test experiments are also carried out. The experimental results reflect that the positioning accuracy can be obviously improved by using this new systematic calibration error model and the validity of this modeling method is also verified.