Cargando…
Discovery of 2′,6-Bis(4-hydroxybenzyl)-2-acetylcyclohexanone, a Novel FtsZ Inhibitor
Multi-drug resistance is increasing in the pathogenic bacterium S. pneumoniae, which is mainly responsible for meningitis and community-acquired pneumonia (CAP), highlighting the need for new anti-pneumococcal agents. We have identified a potential anti-pneumococcal agent, enol 3, which acts by hind...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9610434/ https://www.ncbi.nlm.nih.gov/pubmed/36296585 http://dx.doi.org/10.3390/molecules27206993 |
Sumario: | Multi-drug resistance is increasing in the pathogenic bacterium S. pneumoniae, which is mainly responsible for meningitis and community-acquired pneumonia (CAP), highlighting the need for new anti-pneumococcal agents. We have identified a potential anti-pneumococcal agent, enol 3, which acts by hindering the cell division process by perturbing Z-ring dynamics inside the cell. Enol 3 was also shown to inhibit FtsZ polymerization and induce its aggregation in vitro but does not affect the activity of tubulin and alkaline phosphatase. Docking studies show that 3 binds near the T7 loop, which is the catalytic site of FtsZ. Similar effects on Z-ring and FtsZ assembly were observed in B. subtilis, indicating that 3 could be a broad-spectrum anti-bacterial agent useful in targeting Gram-positive bacteria. In conclusion, compound 3 shows strong anti-pneumococcal activity, prompting further pre-clinical studies to explore its potential. |
---|