Cargando…
Intrinsic Aqueous Solubility: Mechanistically Transparent Data-Driven Modeling of Drug Substances
Intrinsic aqueous solubility is a foundational property for understanding the chemical, technological, pharmaceutical, and environmental behavior of drug substances. Despite years of solubility research, molecular structure-based prediction of the intrinsic aqueous solubility of drug substances is s...
Autores principales: | Oja, Mare, Sild, Sulev, Piir, Geven, Maran, Uko |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9611068/ https://www.ncbi.nlm.nih.gov/pubmed/36297685 http://dx.doi.org/10.3390/pharmaceutics14102248 |
Ejemplares similares
-
Best Practices for QSAR Model Reporting: Physical and Chemical Properties, Ecotoxicity, Environmental Fate, Human Health, and Toxicokinetics Endpoints
por: Piir, Geven, et al.
Publicado: (2018) -
QSAR DataBank - an approach for the digital organization and archiving of QSAR model information
por: Ruusmann, Villu, et al.
Publicado: (2014) -
Machine Learning Quantitative Structure–Property Relationships as a Function of Ionic Liquid Cations for the Gas-Ionic Liquid Partition Coefficient of Hydrocarbons
por: Toots, Karl Marti, et al.
Publicado: (2022) -
Combined Naïve Bayesian, Chemical Fingerprints and Molecular Docking Classifiers to Model and Predict Androgen Receptor Binding Data for Environmentally- and Health-Sensitive Substances
por: García-Sosa, Alfonso T., et al.
Publicado: (2021) -
Mechanistically transparent models for predicting aqueous solubility of rigid, slightly flexible, and very flexible drugs (MW<2000) Accuracy near that of random forest regression
por: Avdeef, Alex
Publicado: (2023)