Cargando…
A Miniaturized Piezoelectric MEMS Accelerometer with Polygon Topological Cantilever Structure
This work proposes a miniaturized piezoelectric MEMS accelerometer based on polygonal topology with an area of only 868 × 833 μm(2). The device consists of six trapezoidal cantilever beams with shorter fixed sides. Meanwhile, a device with larger fixed sides is also designed for comparison. The theo...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9611417/ https://www.ncbi.nlm.nih.gov/pubmed/36295961 http://dx.doi.org/10.3390/mi13101608 |
_version_ | 1784819520903315456 |
---|---|
author | Yang, Chaoxiang Hu, Bohao Lu, Liangyu Wang, Zekai Liu, Wenjuan Sun, Chengliang |
author_facet | Yang, Chaoxiang Hu, Bohao Lu, Liangyu Wang, Zekai Liu, Wenjuan Sun, Chengliang |
author_sort | Yang, Chaoxiang |
collection | PubMed |
description | This work proposes a miniaturized piezoelectric MEMS accelerometer based on polygonal topology with an area of only 868 × 833 μm(2). The device consists of six trapezoidal cantilever beams with shorter fixed sides. Meanwhile, a device with larger fixed sides is also designed for comparison. The theoretical and finite element models are established to analyze the effect of the beam′s effective stiffness on the output voltage and natural frequency. As the stiffness of the device decreases, the natural frequency of the device decreases while the output signal increases. The proposed polygonal topology with shorter fixed sides has higher voltage sensitivity than the larger fixed one based on finite element simulations. The piezoelectric accelerometers are fabricated using Cavity-SOI substrates with a core piezoelectric film of aluminum nitride (AlN) of about 928 nm. The fabricated piezoelectric MEMS accelerometers have good linearity (0.99996) at accelerations less than 2 g. The measured natural frequency of the accelerometer with shorter fixed sides is 98 kHz, and the sensitivity, resolution, and minimum detectable signal at 400 Hz are 1.553 mV/g, 1 mg, and 2 mg, respectively. Compared with the traditional trapezoidal cantilever with the same diaphragm area, its output voltage sensitivity is increased by 22.48%. |
format | Online Article Text |
id | pubmed-9611417 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96114172022-10-28 A Miniaturized Piezoelectric MEMS Accelerometer with Polygon Topological Cantilever Structure Yang, Chaoxiang Hu, Bohao Lu, Liangyu Wang, Zekai Liu, Wenjuan Sun, Chengliang Micromachines (Basel) Article This work proposes a miniaturized piezoelectric MEMS accelerometer based on polygonal topology with an area of only 868 × 833 μm(2). The device consists of six trapezoidal cantilever beams with shorter fixed sides. Meanwhile, a device with larger fixed sides is also designed for comparison. The theoretical and finite element models are established to analyze the effect of the beam′s effective stiffness on the output voltage and natural frequency. As the stiffness of the device decreases, the natural frequency of the device decreases while the output signal increases. The proposed polygonal topology with shorter fixed sides has higher voltage sensitivity than the larger fixed one based on finite element simulations. The piezoelectric accelerometers are fabricated using Cavity-SOI substrates with a core piezoelectric film of aluminum nitride (AlN) of about 928 nm. The fabricated piezoelectric MEMS accelerometers have good linearity (0.99996) at accelerations less than 2 g. The measured natural frequency of the accelerometer with shorter fixed sides is 98 kHz, and the sensitivity, resolution, and minimum detectable signal at 400 Hz are 1.553 mV/g, 1 mg, and 2 mg, respectively. Compared with the traditional trapezoidal cantilever with the same diaphragm area, its output voltage sensitivity is increased by 22.48%. MDPI 2022-09-27 /pmc/articles/PMC9611417/ /pubmed/36295961 http://dx.doi.org/10.3390/mi13101608 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Yang, Chaoxiang Hu, Bohao Lu, Liangyu Wang, Zekai Liu, Wenjuan Sun, Chengliang A Miniaturized Piezoelectric MEMS Accelerometer with Polygon Topological Cantilever Structure |
title | A Miniaturized Piezoelectric MEMS Accelerometer with Polygon Topological Cantilever Structure |
title_full | A Miniaturized Piezoelectric MEMS Accelerometer with Polygon Topological Cantilever Structure |
title_fullStr | A Miniaturized Piezoelectric MEMS Accelerometer with Polygon Topological Cantilever Structure |
title_full_unstemmed | A Miniaturized Piezoelectric MEMS Accelerometer with Polygon Topological Cantilever Structure |
title_short | A Miniaturized Piezoelectric MEMS Accelerometer with Polygon Topological Cantilever Structure |
title_sort | miniaturized piezoelectric mems accelerometer with polygon topological cantilever structure |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9611417/ https://www.ncbi.nlm.nih.gov/pubmed/36295961 http://dx.doi.org/10.3390/mi13101608 |
work_keys_str_mv | AT yangchaoxiang aminiaturizedpiezoelectricmemsaccelerometerwithpolygontopologicalcantileverstructure AT hubohao aminiaturizedpiezoelectricmemsaccelerometerwithpolygontopologicalcantileverstructure AT luliangyu aminiaturizedpiezoelectricmemsaccelerometerwithpolygontopologicalcantileverstructure AT wangzekai aminiaturizedpiezoelectricmemsaccelerometerwithpolygontopologicalcantileverstructure AT liuwenjuan aminiaturizedpiezoelectricmemsaccelerometerwithpolygontopologicalcantileverstructure AT sunchengliang aminiaturizedpiezoelectricmemsaccelerometerwithpolygontopologicalcantileverstructure AT yangchaoxiang miniaturizedpiezoelectricmemsaccelerometerwithpolygontopologicalcantileverstructure AT hubohao miniaturizedpiezoelectricmemsaccelerometerwithpolygontopologicalcantileverstructure AT luliangyu miniaturizedpiezoelectricmemsaccelerometerwithpolygontopologicalcantileverstructure AT wangzekai miniaturizedpiezoelectricmemsaccelerometerwithpolygontopologicalcantileverstructure AT liuwenjuan miniaturizedpiezoelectricmemsaccelerometerwithpolygontopologicalcantileverstructure AT sunchengliang miniaturizedpiezoelectricmemsaccelerometerwithpolygontopologicalcantileverstructure |