Cargando…
Kynurenine Pathway Metabolites in the Blood and Cerebrospinal Fluid Are Associated with Human Aging
The kynurenine pathway is implicated in aging, longevity, and immune regulation, but longitudinal studies and assessment of the cerebrospinal fluid (CSF) are lacking. We investigated tryptophan (Trp) and downstream kynurenine metabolites and their associations with age and change over time in four c...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9616658/ https://www.ncbi.nlm.nih.gov/pubmed/36312896 http://dx.doi.org/10.1155/2022/5019752 |
_version_ | 1784820685927874560 |
---|---|
author | Solvang, Stein-Erik H. Hodge, Allison Watne, Leiv Otto Cabral-Marques, Otavio Nordrehaug, Jan Erik Giles, Graham G. Dugué, Pierre-Antoine Nygård, Ottar Ueland, Per Magne McCann, Adrian Idland, Ane-Victoria Midttun, Øivind Ulvik, Arve Halaas, Nathalie B. Tell, Grethe S. Giil, Lasse M. |
author_facet | Solvang, Stein-Erik H. Hodge, Allison Watne, Leiv Otto Cabral-Marques, Otavio Nordrehaug, Jan Erik Giles, Graham G. Dugué, Pierre-Antoine Nygård, Ottar Ueland, Per Magne McCann, Adrian Idland, Ane-Victoria Midttun, Øivind Ulvik, Arve Halaas, Nathalie B. Tell, Grethe S. Giil, Lasse M. |
author_sort | Solvang, Stein-Erik H. |
collection | PubMed |
description | The kynurenine pathway is implicated in aging, longevity, and immune regulation, but longitudinal studies and assessment of the cerebrospinal fluid (CSF) are lacking. We investigated tryptophan (Trp) and downstream kynurenine metabolites and their associations with age and change over time in four cohorts using comprehensive, targeted metabolomics. The study included 1574 participants in two cohorts with repeated metabolite measurements (mean age at baseline 58 years ± 8 SD and 62 ± 10 SD), 3161 community-dwelling older adults (age range 71-74 years), and 109 CSF donors (mean age 73 years ± 7 SD). In the first two cohorts, age was associated with kynurenine (Kyn), quinolinic acid (QA), and the kynurenine to tryptophan ratio (KTR), and inversely with Trp. Consistent with these findings, Kyn, QA, and KTR increased over time, whereas Trp decreased. Similarly, QA and KTR were higher in community-dwelling older adults of age 74 compared to 71, whereas Trp was lower. Kyn and QA were more strongly correlated with age in the CSF compared to serum and increased in a subset of participants with repeated CSF sampling (n = 33) over four years. We assessed associations with frailty and mortality in two cohorts. QA and KTR were most strongly associated with mortality and frailty. Our study provides robust evidence of changes in tryptophan and kynurenine metabolism with human aging and supports links with adverse health outcomes. Our results suggest that aging activates the inflammation and stress-driven kynurenine pathway systemically and in the brain, but we cannot determine whether this activation is harmful or adaptive. We identified a relatively stronger age-related increase of the potentially neurotoxic end-product QA in brain. |
format | Online Article Text |
id | pubmed-9616658 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-96166582022-10-29 Kynurenine Pathway Metabolites in the Blood and Cerebrospinal Fluid Are Associated with Human Aging Solvang, Stein-Erik H. Hodge, Allison Watne, Leiv Otto Cabral-Marques, Otavio Nordrehaug, Jan Erik Giles, Graham G. Dugué, Pierre-Antoine Nygård, Ottar Ueland, Per Magne McCann, Adrian Idland, Ane-Victoria Midttun, Øivind Ulvik, Arve Halaas, Nathalie B. Tell, Grethe S. Giil, Lasse M. Oxid Med Cell Longev Research Article The kynurenine pathway is implicated in aging, longevity, and immune regulation, but longitudinal studies and assessment of the cerebrospinal fluid (CSF) are lacking. We investigated tryptophan (Trp) and downstream kynurenine metabolites and their associations with age and change over time in four cohorts using comprehensive, targeted metabolomics. The study included 1574 participants in two cohorts with repeated metabolite measurements (mean age at baseline 58 years ± 8 SD and 62 ± 10 SD), 3161 community-dwelling older adults (age range 71-74 years), and 109 CSF donors (mean age 73 years ± 7 SD). In the first two cohorts, age was associated with kynurenine (Kyn), quinolinic acid (QA), and the kynurenine to tryptophan ratio (KTR), and inversely with Trp. Consistent with these findings, Kyn, QA, and KTR increased over time, whereas Trp decreased. Similarly, QA and KTR were higher in community-dwelling older adults of age 74 compared to 71, whereas Trp was lower. Kyn and QA were more strongly correlated with age in the CSF compared to serum and increased in a subset of participants with repeated CSF sampling (n = 33) over four years. We assessed associations with frailty and mortality in two cohorts. QA and KTR were most strongly associated with mortality and frailty. Our study provides robust evidence of changes in tryptophan and kynurenine metabolism with human aging and supports links with adverse health outcomes. Our results suggest that aging activates the inflammation and stress-driven kynurenine pathway systemically and in the brain, but we cannot determine whether this activation is harmful or adaptive. We identified a relatively stronger age-related increase of the potentially neurotoxic end-product QA in brain. Hindawi 2022-10-21 /pmc/articles/PMC9616658/ /pubmed/36312896 http://dx.doi.org/10.1155/2022/5019752 Text en Copyright © 2022 Stein-Erik H. Solvang et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Solvang, Stein-Erik H. Hodge, Allison Watne, Leiv Otto Cabral-Marques, Otavio Nordrehaug, Jan Erik Giles, Graham G. Dugué, Pierre-Antoine Nygård, Ottar Ueland, Per Magne McCann, Adrian Idland, Ane-Victoria Midttun, Øivind Ulvik, Arve Halaas, Nathalie B. Tell, Grethe S. Giil, Lasse M. Kynurenine Pathway Metabolites in the Blood and Cerebrospinal Fluid Are Associated with Human Aging |
title | Kynurenine Pathway Metabolites in the Blood and Cerebrospinal Fluid Are Associated with Human Aging |
title_full | Kynurenine Pathway Metabolites in the Blood and Cerebrospinal Fluid Are Associated with Human Aging |
title_fullStr | Kynurenine Pathway Metabolites in the Blood and Cerebrospinal Fluid Are Associated with Human Aging |
title_full_unstemmed | Kynurenine Pathway Metabolites in the Blood and Cerebrospinal Fluid Are Associated with Human Aging |
title_short | Kynurenine Pathway Metabolites in the Blood and Cerebrospinal Fluid Are Associated with Human Aging |
title_sort | kynurenine pathway metabolites in the blood and cerebrospinal fluid are associated with human aging |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9616658/ https://www.ncbi.nlm.nih.gov/pubmed/36312896 http://dx.doi.org/10.1155/2022/5019752 |
work_keys_str_mv | AT solvangsteinerikh kynureninepathwaymetabolitesinthebloodandcerebrospinalfluidareassociatedwithhumanaging AT hodgeallison kynureninepathwaymetabolitesinthebloodandcerebrospinalfluidareassociatedwithhumanaging AT watneleivotto kynureninepathwaymetabolitesinthebloodandcerebrospinalfluidareassociatedwithhumanaging AT cabralmarquesotavio kynureninepathwaymetabolitesinthebloodandcerebrospinalfluidareassociatedwithhumanaging AT nordrehaugjanerik kynureninepathwaymetabolitesinthebloodandcerebrospinalfluidareassociatedwithhumanaging AT gilesgrahamg kynureninepathwaymetabolitesinthebloodandcerebrospinalfluidareassociatedwithhumanaging AT duguepierreantoine kynureninepathwaymetabolitesinthebloodandcerebrospinalfluidareassociatedwithhumanaging AT nygardottar kynureninepathwaymetabolitesinthebloodandcerebrospinalfluidareassociatedwithhumanaging AT uelandpermagne kynureninepathwaymetabolitesinthebloodandcerebrospinalfluidareassociatedwithhumanaging AT mccannadrian kynureninepathwaymetabolitesinthebloodandcerebrospinalfluidareassociatedwithhumanaging AT idlandanevictoria kynureninepathwaymetabolitesinthebloodandcerebrospinalfluidareassociatedwithhumanaging AT midttunøivind kynureninepathwaymetabolitesinthebloodandcerebrospinalfluidareassociatedwithhumanaging AT ulvikarve kynureninepathwaymetabolitesinthebloodandcerebrospinalfluidareassociatedwithhumanaging AT halaasnathalieb kynureninepathwaymetabolitesinthebloodandcerebrospinalfluidareassociatedwithhumanaging AT tellgrethes kynureninepathwaymetabolitesinthebloodandcerebrospinalfluidareassociatedwithhumanaging AT giillassem kynureninepathwaymetabolitesinthebloodandcerebrospinalfluidareassociatedwithhumanaging |