Cargando…
Synaptic proteomics reveal distinct molecular signatures of cognitive change and C9ORF72 repeat expansion in the human ALS cortex
Increasing evidence suggests synaptic dysfunction is a central and possibly triggering factor in Amyotrophic Lateral Sclerosis (ALS). Despite this, we still know very little about the molecular profile of an ALS synapse. To address this gap, we designed a synaptic proteomics experiment to perform an...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9618182/ https://www.ncbi.nlm.nih.gov/pubmed/36309735 http://dx.doi.org/10.1186/s40478-022-01455-z |
_version_ | 1784820993943928832 |
---|---|
author | Laszlo, Zsofia I. Hindley, Nicole Sanchez Avila, Anna Kline, Rachel A. Eaton, Samantha L. Lamont, Douglas J. Smith, Colin Spires-Jones, Tara L. Wishart, Thomas M. Henstridge, Christopher M. |
author_facet | Laszlo, Zsofia I. Hindley, Nicole Sanchez Avila, Anna Kline, Rachel A. Eaton, Samantha L. Lamont, Douglas J. Smith, Colin Spires-Jones, Tara L. Wishart, Thomas M. Henstridge, Christopher M. |
author_sort | Laszlo, Zsofia I. |
collection | PubMed |
description | Increasing evidence suggests synaptic dysfunction is a central and possibly triggering factor in Amyotrophic Lateral Sclerosis (ALS). Despite this, we still know very little about the molecular profile of an ALS synapse. To address this gap, we designed a synaptic proteomics experiment to perform an unbiased assessment of the synaptic proteome in the ALS brain. We isolated synaptoneurosomes from fresh-frozen post-mortem human cortex (11 controls and 18 ALS) and stratified the ALS group based on cognitive profile (Edinburgh Cognitive and Behavioural ALS Screen (ECAS score)) and presence of a C9ORF72 hexanucleotide repeat expansion (C9ORF72-RE). This allowed us to assess regional differences and the impact of phenotype and genotype on the synaptic proteome, using Tandem Mass Tagging-based proteomics. We identified over 6000 proteins in our synaptoneurosomes and using robust bioinformatics analysis we validated the strong enrichment of synapses. We found more than 30 ALS-associated proteins in synaptoneurosomes, including TDP-43, FUS, SOD1 and C9ORF72. We identified almost 500 proteins with altered expression levels in ALS, with region-specific changes highlighting proteins and pathways with intriguing links to neurophysiology and pathology. Stratifying the ALS cohort by cognitive status revealed almost 150 specific alterations in cognitively impaired ALS synaptic preparations. Stratifying by C9ORF72-RE status revealed 330 protein alterations in the C9ORF72-RE +ve group, with KEGG pathway analysis highlighting strong enrichment for postsynaptic dysfunction, related to glutamatergic receptor signalling. We have validated some of these changes by western blot and at a single synapse level using array tomography imaging. In summary, we have generated the first unbiased map of the human ALS synaptic proteome, revealing novel insight into this key compartment in ALS pathophysiology and highlighting the influence of cognitive decline and C9ORF72-RE on synaptic composition. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40478-022-01455-z. |
format | Online Article Text |
id | pubmed-9618182 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-96181822022-10-31 Synaptic proteomics reveal distinct molecular signatures of cognitive change and C9ORF72 repeat expansion in the human ALS cortex Laszlo, Zsofia I. Hindley, Nicole Sanchez Avila, Anna Kline, Rachel A. Eaton, Samantha L. Lamont, Douglas J. Smith, Colin Spires-Jones, Tara L. Wishart, Thomas M. Henstridge, Christopher M. Acta Neuropathol Commun Research Increasing evidence suggests synaptic dysfunction is a central and possibly triggering factor in Amyotrophic Lateral Sclerosis (ALS). Despite this, we still know very little about the molecular profile of an ALS synapse. To address this gap, we designed a synaptic proteomics experiment to perform an unbiased assessment of the synaptic proteome in the ALS brain. We isolated synaptoneurosomes from fresh-frozen post-mortem human cortex (11 controls and 18 ALS) and stratified the ALS group based on cognitive profile (Edinburgh Cognitive and Behavioural ALS Screen (ECAS score)) and presence of a C9ORF72 hexanucleotide repeat expansion (C9ORF72-RE). This allowed us to assess regional differences and the impact of phenotype and genotype on the synaptic proteome, using Tandem Mass Tagging-based proteomics. We identified over 6000 proteins in our synaptoneurosomes and using robust bioinformatics analysis we validated the strong enrichment of synapses. We found more than 30 ALS-associated proteins in synaptoneurosomes, including TDP-43, FUS, SOD1 and C9ORF72. We identified almost 500 proteins with altered expression levels in ALS, with region-specific changes highlighting proteins and pathways with intriguing links to neurophysiology and pathology. Stratifying the ALS cohort by cognitive status revealed almost 150 specific alterations in cognitively impaired ALS synaptic preparations. Stratifying by C9ORF72-RE status revealed 330 protein alterations in the C9ORF72-RE +ve group, with KEGG pathway analysis highlighting strong enrichment for postsynaptic dysfunction, related to glutamatergic receptor signalling. We have validated some of these changes by western blot and at a single synapse level using array tomography imaging. In summary, we have generated the first unbiased map of the human ALS synaptic proteome, revealing novel insight into this key compartment in ALS pathophysiology and highlighting the influence of cognitive decline and C9ORF72-RE on synaptic composition. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40478-022-01455-z. BioMed Central 2022-10-29 /pmc/articles/PMC9618182/ /pubmed/36309735 http://dx.doi.org/10.1186/s40478-022-01455-z Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Laszlo, Zsofia I. Hindley, Nicole Sanchez Avila, Anna Kline, Rachel A. Eaton, Samantha L. Lamont, Douglas J. Smith, Colin Spires-Jones, Tara L. Wishart, Thomas M. Henstridge, Christopher M. Synaptic proteomics reveal distinct molecular signatures of cognitive change and C9ORF72 repeat expansion in the human ALS cortex |
title | Synaptic proteomics reveal distinct molecular signatures of cognitive change and C9ORF72 repeat expansion in the human ALS cortex |
title_full | Synaptic proteomics reveal distinct molecular signatures of cognitive change and C9ORF72 repeat expansion in the human ALS cortex |
title_fullStr | Synaptic proteomics reveal distinct molecular signatures of cognitive change and C9ORF72 repeat expansion in the human ALS cortex |
title_full_unstemmed | Synaptic proteomics reveal distinct molecular signatures of cognitive change and C9ORF72 repeat expansion in the human ALS cortex |
title_short | Synaptic proteomics reveal distinct molecular signatures of cognitive change and C9ORF72 repeat expansion in the human ALS cortex |
title_sort | synaptic proteomics reveal distinct molecular signatures of cognitive change and c9orf72 repeat expansion in the human als cortex |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9618182/ https://www.ncbi.nlm.nih.gov/pubmed/36309735 http://dx.doi.org/10.1186/s40478-022-01455-z |
work_keys_str_mv | AT laszlozsofiai synapticproteomicsrevealdistinctmolecularsignaturesofcognitivechangeandc9orf72repeatexpansioninthehumanalscortex AT hindleynicole synapticproteomicsrevealdistinctmolecularsignaturesofcognitivechangeandc9orf72repeatexpansioninthehumanalscortex AT sanchezavilaanna synapticproteomicsrevealdistinctmolecularsignaturesofcognitivechangeandc9orf72repeatexpansioninthehumanalscortex AT klinerachela synapticproteomicsrevealdistinctmolecularsignaturesofcognitivechangeandc9orf72repeatexpansioninthehumanalscortex AT eatonsamanthal synapticproteomicsrevealdistinctmolecularsignaturesofcognitivechangeandc9orf72repeatexpansioninthehumanalscortex AT lamontdouglasj synapticproteomicsrevealdistinctmolecularsignaturesofcognitivechangeandc9orf72repeatexpansioninthehumanalscortex AT smithcolin synapticproteomicsrevealdistinctmolecularsignaturesofcognitivechangeandc9orf72repeatexpansioninthehumanalscortex AT spiresjonestaral synapticproteomicsrevealdistinctmolecularsignaturesofcognitivechangeandc9orf72repeatexpansioninthehumanalscortex AT wishartthomasm synapticproteomicsrevealdistinctmolecularsignaturesofcognitivechangeandc9orf72repeatexpansioninthehumanalscortex AT henstridgechristopherm synapticproteomicsrevealdistinctmolecularsignaturesofcognitivechangeandc9orf72repeatexpansioninthehumanalscortex |