Cargando…
Protocol to isolate live single cells while retaining spatial information by combining cell photolabeling and FACS
Single-cell techniques have revolutionized biology; however, the required sample processing inherently implies the loss of spatial localization. Here, using an approach called photoconversion of areas to dissect micro-environments (PADME), we detail steps to isolate live single cells from a primary...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9619724/ https://www.ncbi.nlm.nih.gov/pubmed/36325581 http://dx.doi.org/10.1016/j.xpro.2022.101795 |
Sumario: | Single-cell techniques have revolutionized biology; however, the required sample processing inherently implies the loss of spatial localization. Here, using an approach called photoconversion of areas to dissect micro-environments (PADME), we detail steps to isolate live single cells from a primary breast tumor while retaining spatial information by combining cell photolabeling and FACS (fluorescence-activated cell sorting). These live cells can be subsequently used for myriad techniques, from flow cytometry to single-cell RNA sequencing or other single cell “omics” approach. For complete details on the use and execution of this protocol, please refer to Baldominos et al. (2022). |
---|