Cargando…
A knowledge graph representation learning approach to predict novel kinase–substrate interactions
The human proteome contains a vast network of interacting kinases and substrates. Even though some kinases have proven to be immensely useful as therapeutic targets, a majority are still understudied. In this work, we present a novel knowledge graph representation learning approach to predict novel...
Autores principales: | Gavali, Sachin, Ross, Karen, Chen, Chuming, Cowart, Julie, Wu, Cathy H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9621340/ https://www.ncbi.nlm.nih.gov/pubmed/35975455 http://dx.doi.org/10.1039/d1mo00521a |
Ejemplares similares
-
COVID-19 Knowledge Graph from semantic integration of biomedical literature and databases
por: Chen, Chuming, et al.
Publicado: (2021) -
KSFinder—a knowledge graph model for link prediction of novel phosphorylated substrates of kinases
por: Anandakrishnan, Manju, et al.
Publicado: (2023) -
RESTful API for iPTMnet: a resource for protein post-translational modification network discovery
por: Gavali, Sachin, et al.
Publicado: (2020) -
Text-Graph Enhanced Knowledge Graph Representation Learning
por: Hu, Linmei, et al.
Publicado: (2021) -
Protein ontology on the semantic web for knowledge discovery
por: Chen, Chuming, et al.
Publicado: (2020)