Cargando…
DPCfam: Unsupervised protein family classification by Density Peak Clustering of large sequence datasets
Proteins that are known only at a sequence level outnumber those with an experimental characterization by orders of magnitude. Classifying protein regions (domains) into homologous families can generate testable functional hypotheses for yet unannotated sequences. Existing domain family resources ty...
Autores principales: | Russo, Elena Tea, Barone, Federico, Bateman, Alex, Cozzini, Stefano, Punta, Marco, Laio, Alessandro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9621593/ https://www.ncbi.nlm.nih.gov/pubmed/36260616 http://dx.doi.org/10.1371/journal.pcbi.1010610 |
Ejemplares similares
-
Density Peak clustering of protein sequences associated to a Pfam clan reveals clear similarities and interesting differences with respect to manual family annotation
por: Russo, Elena Tea, et al.
Publicado: (2021) -
Unsupervised clustering and epigenetic classification of single cells
por: Zamanighomi, Mahdi, et al.
Publicado: (2018) -
Unsupervised Learning Methods for Molecular Simulation
Data
por: Glielmo, Aldo, et al.
Publicado: (2021) -
Quantum Density Peak Clustering Algorithm
por: Wu, Zhihao, et al.
Publicado: (2022) -
Unsupervised Contrastive Peak Caller for ATAC-seq
por: Vu, Ha T.H., et al.
Publicado: (2023)