Cargando…
Performance variability of radiomics machine learning models for the detection of clinically significant prostate cancer in heterogeneous MRI datasets
BACKGROUND: Radiomics promises to enhance the discriminative performance for clinically significant prostate cancer (csPCa), but still lacks validation in real-life scenarios. This study investigates the classification performance and robustness of machine learning radiomics models in heterogeneous...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9622454/ https://www.ncbi.nlm.nih.gov/pubmed/36330197 http://dx.doi.org/10.21037/qims-22-265 |