Cargando…
Uncertainty-informed deep learning models enable high-confidence predictions for digital histopathology
A model’s ability to express its own predictive uncertainty is an essential attribute for maintaining clinical user confidence as computational biomarkers are deployed into real-world medical settings. In the domain of cancer digital histopathology, we describe a clinically-oriented approach to unce...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9630455/ https://www.ncbi.nlm.nih.gov/pubmed/36323656 http://dx.doi.org/10.1038/s41467-022-34025-x |