Cargando…

Efficient Myogenic/Adipogenic Transdifferentiation of Bovine Fibroblasts in a 3D Bioprinting System for Steak‐Type Cultured Meat Production

The interest in cultured meat is increasing because of the problems with conventional livestock industry. Recently, many studies related to cultured meat have been conducted, but producing large‐sized cultured meat remains a challenge. It is aimed to introduce 3D bioprinting for producing large cell...

Descripción completa

Detalles Bibliográficos
Autores principales: Jeong, Dayi, Seo, Jeong Wook, Lee, Hong‐Gu, Jung, Woo Kyung, Park, Yong Ho, Bae, Hojae
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9631076/
https://www.ncbi.nlm.nih.gov/pubmed/36192168
http://dx.doi.org/10.1002/advs.202202877
Descripción
Sumario:The interest in cultured meat is increasing because of the problems with conventional livestock industry. Recently, many studies related to cultured meat have been conducted, but producing large‐sized cultured meat remains a challenge. It is aimed to introduce 3D bioprinting for producing large cell aggregates for cultured meat production. A hydrogel scaffold is produced at the centimeter scale using a bioink consisting of photocrosslinkable materials for digital light processing‐based (DLP) printing, which has high printing accuracy and can produce geometrically complex structures. The light exposure time for hydrogel photopolymerization by DLP bioprinting is optimized based on photorheometry and cell viability assays. Naturally immortalized bovine embryonic fibroblast cells transformed with MyoD and PPARγ2 instead of primary cells are used as the latter have difficulties in maintaining stemness and are associated with animal ethics issues. The cells are mixed into the hydrogel for printing. Myogenesis and adipogenesis are induced simply by changing the medium after printing. Scaffolds are obtained successfully with living cells and large microchannels. The cooked cultured meat maintains its size and shape upon cutting. The overall dimensions are 3.43 cm × 5.53 cm × 0.96 cm. This study provides proof‐of‐concept for producing 3D cultured meat using bioinks.